Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identifying Root Cause and Derived Effects in Causal Relationships
Högskolan i Skövde, Institutionen för informationsteknologi.
Högskolan i Skövde, Institutionen för informationsteknologi.ORCID iD: 0000-0001-6245-5850
Högskolan i Skövde, Institutionen för informationsteknologi.ORCID iD: 0000-0003-2900-9335
2017 (English)In: Human Interface and the Management of Information: Information, Knowledge and Interaction Design: 19th International Conference, HCI International 2017, Vancouver, BC, Canada, July 9–14, 2017, Proceedings, Part I / [ed] Sakae Yamamoto, Springer , 2017, p. 22-34Conference paper, Published paper (Refereed)
Abstract [en]

This paper focuses on identifying factors that influence the process of finding a root cause and a derived effect in causal node-link graphs with associated strength and significance depictions. We discuss in detail the factors that seem to be involved in identifying a global cause and effect based on the analysis of the results of an online user study with 44 participants, who used both sequential and non-sequential graph layouts. In summary, the results show that participants show geodesic-path tendencies when selecting causes and derived effects, and that context matters, i.e., participant’s own beliefs, experiences and knowledge might influence graph interpretation.

Place, publisher, year, edition, pages
Springer , 2017. p. 22-34
Series
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 10273
Keywords [en]
cause and effect, strenght and significance, graph visualization, user study
National Category
Computer and Information Sciences
Research subject
Skövde Artificial Intelligence Lab (SAIL); INF301 Data Science
Identifiers
URN: urn:nbn:se:hj:diva-43245DOI: 10.1007/978-3-319-58521-5_2Scopus ID: 2-s2.0-85025150109Local ID: 0;0;miljJAILISBN: 978-3-319-58520-8 (print)ISBN: 978-3-319-58521-5 (electronic)OAI: oai:DiVA.org:hj-43245DiVA, id: diva2:1293746
Conference
Thematic track on Human Interface and the Management of Information, held as part of the 19th International Conference on Human–Computer Interaction, HCI International 2017, Vancouver, Canada, 9 July 2017 through 14 July 2017
Projects
BIDAF
Funder
Knowledge FoundationAvailable from: 2017-10-02 Created: 2019-03-05 Last updated: 2019-08-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Bae, JuheeHelldin, ToveRiveiro, Maria

Search in DiVA

By author/editor
Bae, JuheeHelldin, ToveRiveiro, Maria
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf