Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Operational Demand Forecasting In District Heating Systems Using Ensembles Of Online Machine Learning Algorithms
NODA, Karlshamn, Sweden.
NODA, Karlshamn, Sweden.
EnergyVille, Genk, Belgium.
EnergyVille, Genk, Belgium.
Vise andre og tillknytning
2017 (engelsk)Inngår i: 15TH INTERNATIONAL SYMPOSIUM ON DISTRICT HEATING AND COOLING (DHC15-2016) / [ed] Ulseth, R, Elsevier, 2017, s. 208-216Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Heat demand forecasting is in one form or another an integrated part of most optimisation solutions for district heating and cooling (DHC). Since DHC systems are demand driven, the ability to forecast this behaviour becomes an important part of most overall energy efficiency efforts. This paper presents the current status and results from extensive work in the development, implementation and operational service of online machine learning algorithms for demand forecasting. Recent results and experiences are compared to results predicted by previous work done by the authors. The prior work, based mainly on certain decision tree based regression algorithms, is expanded to include other forms of decision tree solutions as well as neural network based approaches. These algorithms are analysed both individually and combined in an ensemble solution. Furthermore, the paper also describes the practical implementation and commissioning of the system in two different operational settings where the data streams are analysed online in real-time. It is shown that the results are in line with expectations based on prior work, and that the demand predictions have a robust behaviour within acceptable error margins. Applications of such predictions in relation to intelligent network controllers for district heating are explored and the initial results of such systems are discussed.

sted, utgiver, år, opplag, sider
Elsevier, 2017. s. 208-216
Serie
Energy Procedia, ISSN 1876-6102 ; 116
Emneord [en]
district heating and cooling networks, heat load forecast, algorithms, machine learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-37932DOI: 10.1016/j.egypro.2017.05.068ISI: 000406743000019OAI: oai:DiVA.org:hj-37932DiVA, id: diva2:1159959
Konferanse
15th International Symposium on District Heating and Cooling (DHC), Seoul
Tilgjengelig fra: 2017-11-24 Laget: 2017-11-24 Sist oppdatert: 2019-08-20bibliografisk kontrollert

Open Access i DiVA

fulltext(802 kB)305 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 802 kBChecksum SHA-512
d8b6e0f3fb6566ed77f3b320f1c7b93c73fa32830a488482c0f4952b849f0b7005d5ec9deaf4d9df5dca94e0dfd74d1bdaf198602d6a3c61f93e1cdf88d553fe
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstFulltext

Personposter BETA

Lavesson, Niklas

Søk i DiVA

Av forfatter/redaktør
Lavesson, Niklas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 305 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 261 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf