Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Nitsche method for elliptic problems on composite surfaces
Högskolan i Jönköping, Tekniska Högskolan, JTH, Produktutveckling. Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Produktutveckling - Simulering och optimering.ORCID-id: 0000-0001-7352-1550
Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden.
Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden.
Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden.
2017 (engelsk)Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 326, s. 505-525Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We develop a finite element method for elliptic partial differential equations on so called composite surfaces that are built up out of a finite number of surfaces with boundaries that fit together nicely in the sense that the intersection between any two surfaces in the composite surface is either empty, a point, or a curve segment, called an interface curve. Note that several surfaces can intersect along the same interface curve. On the composite surface we consider a broken finite element space which consists of a continuous finite element space at each subsurface without continuity requirements across the interface curves. We derive a Nitsche type formulation in this general setting and by assuming only that a certain inverse inequality and an approximation property hold we can derive stability and error estimates in the case when the geometry is exactly represented. We discuss several different realizations, including so called cut meshes, of the method. Finally, we present numerical examples. 

sted, utgiver, år, opplag, sider
Elsevier, 2017. Vol. 326, s. 505-525
Emneord [en]
A priori error estimates, Composite surfaces, Laplace–Beltrami operator, Nitsche method, Inverse problems, Partial differential equations, Approximation properties, Beltrami, Composite surface, Continuity requirements, Elliptic partial differential equation, Finite element space, Priori error estimate, Finite element method
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-37566DOI: 10.1016/j.cma.2017.08.033ISI: 000413322300022Scopus ID: 2-s2.0-85029527302OAI: oai:DiVA.org:hj-37566DiVA, id: diva2:1147403
Tilgjengelig fra: 2017-10-05 Laget: 2017-10-05 Sist oppdatert: 2017-12-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Hansbo, Peter

Søk i DiVA

Av forfatter/redaktør
Hansbo, Peter
Av organisasjonen
I samme tidsskrift
Computer Methods in Applied Mechanics and Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 161 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf