Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Matching Feature Points in 3D World
Högskolan i Jönköping, Tekniska Högskolan, JTH, Data- och elektroteknik.
2012 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

This thesis work deals with the most actual topic in Computer Vision field which is scene understanding and this using matching of 3D feature point images. The objective is to make use of Saab’s latest breakthrough in extraction of 3D feature points, to identify the best alignment of at least two 3D feature point images.

The thesis gives a theoretical overview of the latest algorithms used for feature detection, description and matching. The work continues with a brief description of the simultaneous localization and mapping (SLAM) technique, ending with a case study on evaluation of the newly developed software solution for SLAM, called slam6d.

Slam6d is a tool that registers point clouds into a common coordinate system. It does an automatic high-accurate registration of the laser scans. In the case study the use of slam6d is extended in registering 3D feature point images extracted from a stereo camera and the results of registration are analyzed.

In the case study we start with registration of one single 3D feature point image captured from stationary image sensor continuing with registration of multiple images following a trail.

Finally the conclusion from the case study results is that slam6d can register non-laser scan extracted feature point images with high-accuracy in case of single image but it introduces some overlapping results in the case of multiple images following a trail.

Ort, förlag, år, upplaga, sidor
2012. , s. 45
Nyckelord [en]
Computer Vision, Edges, Corners, 3D Feature Points, Point Clouds, Simultaneous Localization and Mapping (SLAM), 3D Scene, Iterative Closest Points Algorithm (ICP), Global Matching.
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:hj:diva-23049OAI: oai:DiVA.org:hj-23049DiVA, id: diva2:686457
Externt samarbete
Saab Training Systems
Ämne / kurs
JTH, Data- och elektroteknik
Handledare
Examinatorer
Tillgänglig från: 2014-01-28 Skapad: 2014-01-12 Senast uppdaterad: 2014-01-28Bibliografiskt granskad

Open Access i DiVA

fulltext(2606 kB)611 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2606 kBChecksumma SHA-512
53d8ae44ce0f34a731349474ca97a0fd61d1ff9e14e83bcce07b696eba1e5e1d6ae14a2eef17970cba189e991cca8e43d3f6151870d80b9340a2ce19b45964cc
Typ fulltextMimetyp application/pdf

Av organisationen
JTH, Data- och elektroteknik
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 611 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 685 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf