Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Knowledge Combination Analysis Reveals That Artificial Intelligence Research Is More Like “Normal Science” Than “Revolutionary Science”
Arizona State University, United States.
Arizona State University, United States.
Arizona State University, United States.
Arizona State University, United States.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Proceedings of the Annual Hawaii International Conference on System Sciences, IEEE Computer Society , 2024, s. 5598-5607Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Abstract [en]

Artificial Intelligence (AI) research is intrinsically innovative and serves as a source of innovation for research and development in a variety of domains. There is an assumption that AI can be considered “revolutionary science” rather than “normal science.” Using a dataset of nearly 300,000 AI publications, this paper examines the co-citation dynamics of AI research and investigates its trajectory from the perspective of knowledge creation as a combinatorial process. We found that while the number of AI publications grew significantly, they largely follows a normal science trajectory characterized by incremental and cumulative advancements. AI research that combines existing knowledge in highly conventional ways is a substantial driving force in AI and has the highest scientific impact. Radically new ideas are relatively rare. By offering insights into the co-citation dynamics of AI research, this work contributes to understanding its evolution and guiding future research directions.

Ort, förlag, år, upplaga, sidor
IEEE Computer Society , 2024. s. 5598-5607
Serie
Hawaii International Conference on System Sciences, ISSN 1530-1605, E-ISSN 2572-6862 ; 57
Nyckelord [en]
artificial intelligence, bibliographic data, co-citation networks, knowledge combination, knowledge management, scientific research, Artificial intelligence research, Citation dynamics, Cocitation, Combination analysis, Normal science, Scientific researches, Sources of innovation
Nationell ämneskategori
Människa-datorinteraktion (interaktionsdesign)
Identifikatorer
URN: urn:nbn:se:hj:diva-65939Scopus ID: 2-s2.0-85199808929ISBN: 978-0-9981331-7-1 (tryckt)OAI: oai:DiVA.org:hj-65939DiVA, id: diva2:1889070
Konferens
Annual Hawaii International Conference on System Sciences, HICSS 2024 Honolulu 3 January 2024 through 6 January 2024
Tillgänglig från: 2024-08-14 Skapad: 2024-08-14 Senast uppdaterad: 2024-08-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

ScopusFulltext

Person

Strumsky, Deborah

Sök vidare i DiVA

Av författaren/redaktören
Strumsky, Deborah
Av organisationen
IHH, NationalekonomiIHH, Centre for Entrepreneurship and Spatial Economics (CEnSE)
Människa-datorinteraktion (interaktionsdesign)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 30 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf