Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mimer: A Web-Based Tool for Knowledge Discovery in Multi-Criteria Decision Support [Application Notes]
University of Skövde, Skövde, Sweden.ORCID-id: 0000-0003-3124-0077
University of Skövde, Skövde, Sweden.ORCID-id: 0000-0001-5436-2128
Jönköping University, Tekniska Högskolan, JTH, Avdelningen för datateknik och informatik.ORCID-id: 0000-0003-2900-9335
University of Skövde, Skövde, Sweden.ORCID-id: 0000-0003-0111-1776
2024 (Engelska)Ingår i: IEEE Computational Intelligence Magazine, ISSN 1556-603X, E-ISSN 1556-6048, Vol. 19, nr 3, s. 73-87Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Practitioners of multi-objective optimization currently lack open tools that provide decision support through knowledge discovery. There exist many software platforms for multi-objective optimization, but they often fall short of implementing methods for rigorous post-optimality analysis and knowledge discovery from the generated solutions. This paper presents Mimer, a multi-criteria decision support tool for solution exploration, preference elicitation, knowledge discovery, and knowledge visualization. Mimer is openly available as a web-based tool and uses state-of-the-art web-technologies based on WebAssembly to perform heavy computations on the client-side. Its features include multiple linked visualizations and input methods that enable the decision maker to interact with the solutions, knowledge discovery through interactive data mining and graph-based knowledge visualization. It also includes a complete Python programming interface for advanced data manipulation tasks that may be too specific for the graphical interface. Mimer is evaluated through a user study in which the participants are asked to perform representative tasks simulating practical analysis and decision making. The participants also complete a questionnaire about their experience and the features available in Mimer. The survey indicates that participants find Mimer useful for decision support. The participants also offered suggestions for enhancing some features and implementing new features to extend the capabilities of the tool.

Ort, förlag, år, upplaga, sidor
IEEE, 2024. Vol. 19, nr 3, s. 73-87
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:hj:diva-65681DOI: 10.1109/mci.2024.3401420ISI: 001271410100001Scopus ID: 2-s2.0-85198700093OAI: oai:DiVA.org:hj-65681DiVA, id: diva2:1884389
Forskningsfinansiär
KK-stiftelsen, 2018-0011Tillgänglig från: 2024-07-16 Skapad: 2024-07-16 Senast uppdaterad: 2024-08-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Riveiro, Maria

Sök vidare i DiVA

Av författaren/redaktören
Smedberg, HenrikBandaru, SunithRiveiro, MariaNg, Amos H.C.
Av organisationen
JTH, Avdelningen för datateknik och informatik
I samma tidskrift
IEEE Computational Intelligence Magazine
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 105 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf