Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine Learning to Facilitate the Integration of Renewable Energies into the Grid
Faculty of Engineering, Multiobjective Optimization REsearch Lab (MORE Lab), Department of Electrical Engineering & Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.
Faculty of Engineering, Multiobjective Optimization REsearch Lab (MORE Lab), Department of Electrical Engineering & Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.ORCID-id: 0000-0002-1319-513X
Faculty of Engineering, Multiobjective Optimization REsearch Lab (MORE Lab), Department of Electrical Engineering & Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.
2023 (Engelska)Ingår i: Handbook of Smart Energy Systems / [ed] M. Fathi, E. Zio & P. M. Pardalos, Cham: Springer, 2023, s. 1-23Kapitel i bok, del av antologi (Refereegranskat)
Hållbar utveckling
00. Hållbar utveckling, 9. Hållbar industri, innovationer och infrastruktur
Abstract [en]

More sustainable generation and use of electricity are being achieved through a growing contribution from solar and wind power. These are intermittent sources with output evolving according to broad seasonal and diurnal patterns on which superimpose rather unpredictable changes due to weather, such as an appearance of cloud layers attenuating the amount of irradiance received by the surface. The integration of the solar production and the parameters that influence it creates a complex system where on continuous basis decisions need to be made on whether to store or forfeit excess solar electricity or whether to call on hydrocarbon-powered stations. All of this is to satisfy demand which is itself constantly changing with broad seasonal and diurnal trends. Thus, optimal decisions depend on a multitude of variables, from technical parameters of the devices to weather-related variables to predict demand on a timescale sufficient to adjust supply and decide on the best mix of technologies. Machine learning techniques are promising for the integration of renewable energies into the grid. Thus, this chapter proposes an efficient solution for grid management and control of the distribution of electrical energy while encouraging the integration of renewable energy. In particular, the proposed solution aims to be able to predict the production of intermittent sources such as the sun in our case so that its integration is more efficient. So, it will ensure that renewable and non-renewable sources are complementary at all times, offering then the best possible storage and production tools. All this is to ensure instantaneous energy balance.

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2023. s. 1-23
Nyckelord [en]
Solar power, Irradiance, Intermittent, Prediction, Machine learning, Storage
Nationell ämneskategori
Energisystem Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:hj:diva-63908DOI: 10.1007/978-3-030-72322-4_65-1ISBN: 978-3-030-72322-4 (tryckt)OAI: oai:DiVA.org:hj-63908DiVA, id: diva2:1848011
Tillgänglig från: 2024-04-02 Skapad: 2024-04-02 Senast uppdaterad: 2024-04-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Tzanetos, Alexandros

Sök vidare i DiVA

Av författaren/redaktören
Tzanetos, Alexandros
EnergisystemDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 28 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf