Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Parameter tuning of hybrid nature-inspired intelligent metaheuristics for solving financial portfolio optimization problems
Management and Decision Engineering Laboratory, Department of Financial and Management Engineering, University of the Aegean, Greece.
Management and Decision Engineering Laboratory, Department of Financial and Management Engineering, University of the Aegean, Greece.
Management and Decision Engineering Laboratory, Department of Financial and Management Engineering, University of the Aegean, Greece.ORCID-id: 0000-0002-1319-513X
2012 (Engelska)Ingår i: Artificial Intelligence: Theories, Models and Applications: 7th Hellenic Conference on AI, SETN 2012, Lamia, Greece, May 28-31, 2012, Proceedings / [ed] Ilias Maglogiannis, Vassilis Plagianakos & Ioannis Vlahavas, Berlin: Springer, 2012, s. 198-205Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In previous studies, nature-inspired algorithms have been implemented in order to tackle hard NP-optimization problems, in the financial domain. Specifically, the task of finding optimal combination of assets with the aim of efficiently allocating your available capital is of major concern. One of the main reasons, which justifies the difficulties entailed in this problem, is the high level of uncertainty in the financial markets and not only. As mentioned above, artificial intelligent algorithms may provide a solution to this task. However, there is one major drawback concerning these techniques: the large number of open parameters. The aim of this study is twofold. Firstly, results from extended simulations are presented regarding the application of a specific hybrid nature-inspired metaheuristic in a particular formulation of the financial portfolio optimization problem. The main focus is on presenting comparative results regarding the performance of the proposed scheme for various configuration settings. Secondly, it is our intend to enhance the hybrid scheme's performance by incorporating intelligent searching components such as other metaheuristics (simulated annealing).

Ort, förlag, år, upplaga, sidor
Berlin: Springer, 2012. s. 198-205
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 7297
Nyckelord [en]
genetic algorithm, hybrid Nature-Inspired Intelligent (NII) algorithm, parameter tuning, portfolio optimization, Artificial intelligent, Financial domains, Financial market, Financial portfolio, Hybrid scheme, Intelligent searching, Meta heuristics, Metaheuristic, Nature-inspired algorithms, NP optimization problems, Optimal combination, Parameter-tuning, Artificial intelligence, Genetic algorithms, Heuristic algorithms, Nickel compounds, Simulated annealing, Financial data processing
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:hj:diva-63844DOI: 10.1007/978-3-642-30448-4_25Scopus ID: 2-s2.0-84861695691ISBN: 9783642304477 (tryckt)ISBN: 9783642304484 (digital)OAI: oai:DiVA.org:hj-63844DiVA, id: diva2:1845880
Konferens
7th Hellenic Conference on AI, SETN 2012, Lamia, Greece, May 28-31, 2012
Tillgänglig från: 2024-03-20 Skapad: 2024-03-20 Senast uppdaterad: 2024-03-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Tzanetos, Alexandros

Sök vidare i DiVA

Av författaren/redaktören
Tzanetos, Alexandros
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 7 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf