Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adaptation of enterprise modeling methods for large language models
Middlesex University, London, United Kingdom.
Tata Consultancy Services Research, Pune, India.
Jönköping University, Tekniska Högskolan, JTH, Avdelningen för datateknik och informatik. The University of Rostock, Rostock, Germany.ORCID-id: 0000-0002-7431-8412
2024 (Engelska)Ingår i: The practice of enterprise modeling: 16th IFIP Working Conference, PoEM 2023, Vienna, Austria, November 28 – December 1, 2023, Proceedings, Cham: Springer, 2024, s. 3-18Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Large language models (LLM) are considered by many researchers as promising technology for automating routine tasks. Results from applying LLM in engineering disciplines such as Enterprise Modeling also indicate potential for the support of modeling activities. LLMs are fine-tuned for specific tasks using chat based interaction through the use of prompts. This paper aims at a detailed investigation of the potential of LLMs in Enterprise Modeling (EM) by taking the perspective of EM method adaptation of selected parts of the modeling process within the context of using prompts to interrogate the LLM. The research question addressed is: What adaptations in EM methods have to be made to exploit the potential of prompt based interaction with LLMs? The main contributions are (1) a meta-model for prompt engineering that integrates the concepts of the modeling domain under consideration with the notation of the modeling language applied and the input and output of prompts, (2) an investigation into the general potential of LLM in EM methods and its application in the 4EM method, and (3) implications for enterprise modeling methods.

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2024. s. 3-18
Serie
Lecture Notes in Business Information Processing, ISSN 1865-1348, E-ISSN 1865-1356 ; 497
Nyckelord [en]
ChatGPT, Enterprise Modeling, Large Language Model, Modeling Method, Prompt meta-model, Computational linguistics, Engineering disciplines, Enterprise models, Language model, Meta model, Metamodeling, Model method, Specific tasks, Modeling languages
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik
Identifikatorer
URN: urn:nbn:se:hj:diva-63353DOI: 10.1007/978-3-031-48583-1_1Scopus ID: 2-s2.0-85178574971ISBN: 9783031485824 (tryckt)ISBN: 9783031485831 (digital)OAI: oai:DiVA.org:hj-63353DiVA, id: diva2:1828091
Konferens
16th IFIP Working Conference, PoEM 2023, Vienna, Austria, November 28 – December 1, 2023
Tillgänglig från: 2024-01-16 Skapad: 2024-01-16 Senast uppdaterad: 2024-01-16Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Sandkuhl, Kurt

Sök vidare i DiVA

Av författaren/redaktören
Sandkuhl, Kurt
Av organisationen
JTH, Avdelningen för datateknik och informatik
Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 208 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf