On the selection of relevant historical demand data for revenue management applied to transportationVisa övriga samt affilieringar
2023 (Engelska)Ingår i: Journal of Revenue and Pricing Management, ISSN 1476-6930, E-ISSN 1477-657X, Vol. 22, nr 4, s. 266-275Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
The success of revenue management models depends to a large extent on the quality of historical data used to forecast future bookings. Several theoretical models and best practices of handing historical data have been developed over the years, that all rely on assumptions about underlying distribution and seasonality in the historical data. In this paper, we describe a novel method that compares the fingerprints of the departure to optimise and selects historical departures without making assumptions on data distribution or seasonality. By evaluating the method at the departure level and using the Nemenyi rank test, we show the method’s application in the ferry transportation business and discuss its advantages.
Ort, förlag, år, upplaga, sidor
Springer, 2023. Vol. 22, nr 4, s. 266-275
Nyckelord [en]
Departure clustering, Historical demand, Pricing, Revenue management
Nationell ämneskategori
Datavetenskap (datalogi) Företagsekonomi
Identifikatorer
URN: urn:nbn:se:hj:diva-63304DOI: 10.1057/s41272-022-00371-0ISI: 000765660700001Scopus ID: 2-s2.0-85125697770Lokalt ID: HOA;;926496OAI: oai:DiVA.org:hj-63304DiVA, id: diva2:1826396
2024-01-112024-01-112024-01-11Bibliografiskt granskad