Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Enhancing video game experience with playtime training and tailoring of virtual opponents: Using Deep Q-Network based Reinforcement Learning on a Multi-Agent Environment
2023 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

When interacting with fictional environments, the users' sense of immersion can be broken when characters act in mechanical and predictable ways. The vast majority of AIs for such fictional characters, that control their actions, are statically scripted, and expert players can learn strategies that take advantage of this to easily win challenges that were intended to be hard. Games can also be too hard or too easy for certain players. Through the means of Reinforcement Learning, we propose a method to train adversaries in a simple environment for a game of tag from the PettingZoo library, exploring the possibility of such modern AIs to learn during the game. Our work aims towards a new concept of continuously learning AIs in video games, giving a framework to greatly increase adaptability of products to their users, and replayability of the challenges offered in them. We found that our solution allows the agents to learn during the game, but that more work should be done to achieve a model that tailors the behavior to the specific player. Nonetheless, this is an exploratory step towards more research on this new concept, which could have numerous applications in many genres of video games. 

Ort, förlag, år, upplaga, sidor
2023. , s. 21
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:hj:diva-61040ISRN: JU-JTH-DTT-2-20230008OAI: oai:DiVA.org:hj-61040DiVA, id: diva2:1765996
Handledare
Examinatorer
Tillgänglig från: 2023-08-24 Skapad: 2023-06-12 Senast uppdaterad: 2023-08-24Bibliografiskt granskad

Open Access i DiVA

Play time training and tailoring of video game opponents with Reinforcement Learning(2154 kB)105 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2154 kBChecksumma SHA-512
cf13290ffa45e0366a936a85002d4015ef7f44a5e90c56eed655aeed3221324b8c02473be2703470ff7349ffe2e3c199170736e85ac4f14ace13733998404398
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Pillai, NishantGiaconia, Roberto
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 109 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 480 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf