Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A priori knowledge based frequency-domain quantification of prostate Magnetic Resonance Spectroscopy
CReSTIC, University of Reims, IUT de Troyes, Troyes Cedex, France.
CReSTIC, University of Reims, IUT de Troyes, Troyes Cedex, France.
CReSTIC, University of Reims, IUT de Troyes, Troyes Cedex, France.ORCID-id: 0000-0002-9999-9197
LE2I, UMR CNRS 5158, University of Bourgogne, Dijon, France.
2011 (Engelska)Ingår i: Biomedical Signal Processing and Control, ISSN 1746-8094, E-ISSN 1746-8108, Vol. 6, nr 1, s. 13-20Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper proposes a frequency-domain Magnetic Resonance (MR) spectral processing method based on sparse representation for accurate quantification of prostate spectra. Generally, an observed prostate spectrum can be considered as a mixture of resonances of interest, a baseline and noise. As the resonances of interest often overlap and the baseline is unknown, their separation and quantification can be difficult. In the proposed method, based on the commonly used signal model of prostate spectra and some a priori knowledge of nonlinear model parameters, a dictionary is constructed which can sparsely represent the resonances of interest as well as the baseline in an input spectrum. The estimation of the resonances of interest is achieved by finding their sparse representations with respect this dictionary. A linear pursuit algorithm based on regularized FOCUSS (Focal Underdetermined System Solver) algorithm is proposed to estimate these sparse representations. The robustness and accuracy of prostate spectrum quantification of the proposed method are improved compared with two classical spectral processing methods: model-based time domain fitting and frequency-domain analysis based on peak integration when tested on simulation data. Quantification on in vivo prostate spectra is also demonstrated and the results appear encouraging.

Ort, förlag, år, upplaga, sidor
Elsevier, 2011. Vol. 6, nr 1, s. 13-20
Nyckelord [en]
Magnetic Resonance Spectroscopy (MRS), Prostate spectrum, Quantification, Sparse representation, Inverse synthetic aperture radar, Knowledge based systems, Magnetic domains, Magnetic resonance, Magnetic resonance spectroscopy, Processing, Time domain analysis, Urology, Accurate quantifications, Magnetic resonance spectroscopies (MRS), Prostate magnetic resonance spectroscopies, Time-domain fitting, Underdetermined systems, Frequency domain analysis, algorithm, conference paper, controlled study, frequency analysis, nuclear magnetic resonance spectroscopy, parameter, priority journal, prostate, statistical model
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hj:diva-60435DOI: 10.1016/j.bspc.2010.06.003ISI: 000287072000003Scopus ID: 2-s2.0-78651370428OAI: oai:DiVA.org:hj-60435DiVA, id: diva2:1759051
Tillgänglig från: 2023-05-24 Skapad: 2023-05-24 Senast uppdaterad: 2023-05-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Landré, Jérôme

Sök vidare i DiVA

Av författaren/redaktören
Landré, Jérôme
I samma tidskrift
Biomedical Signal Processing and Control
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 57 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf