Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Personalized Learning Scheme for Internet of Vehicles Caching
Hassan II University, Casablanca, Morocco.
Jönköping University.
Hassan II University, Casablanca, Morocco.
Mohammed VI Polytechnic University, Benguerir, Morocco.
2021 (Engelska)Ingår i: 2021 IEEE Global Communications Conference, GLOBECOM 2021: Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2021Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The emergence of Internet of Vehicles (IoV), as a large-scale distributed system, introduces new research and development challenges for supporting resource-constrained devices. In fact, the latency of retrieving contents and performing the desired tasks may increase dramatically and failures may occur when resource limits are exceeded. In this paper, we assess the use of advanced machine learning paradigms to achieve more accurate personalized edge caching and replacement decisions, while supporting data privacy, vehicle mobility, time-varying and location-aware content popularity. Firstly, we show that popular federated learning-based schemes fail in maintaining acceptable performance under the above settings. Secondly, we propose a scalable-by-design edge caching scheme for IoV, leveraging decentralized region-to-region Road Side Units (RSUs) exchanges while enhancing region local models. Finally, simulation results show that our scheme achieves higher performance in terms of average delay and edge hit ratio while keeping the cost and privacy risks at a minimum.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2021.
Nyckelord [en]
Data privacy, Edge caching, Edge replacement, Large-scale distributed system, Learning schemes, Personalized learning, Research and development, Resourceconstrained devices, Supporting resources, Time varying, Vehicle mobility, Vehicles
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
URN: urn:nbn:se:hj:diva-56190DOI: 10.1109/GLOBECOM46510.2021.9685308Scopus ID: 2-s2.0-85127298432ISBN: 9781728181059 (tryckt)OAI: oai:DiVA.org:hj-56190DiVA, id: diva2:1651513
Konferens
2021 IEEE Global Communications Conference, GLOBECOM 2021, 7 December 2021 through 11 December 2021
Tillgänglig från: 2022-04-12 Skapad: 2022-04-12 Senast uppdaterad: 2022-04-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus
Av organisationen
Jönköping University
Kommunikationssystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 36 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf