Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Well-Calibrated and Sharp Interpretable Multi-Class Models
Jönköping University, Tekniska Högskolan, JTH, Avdelningen för datavetenskap, Jönköping AI Lab (JAIL).ORCID-id: 0000-0003-0412-6199
Jönköping University, Tekniska Högskolan, JTH, Avdelningen för datavetenskap, Jönköping AI Lab (JAIL).ORCID-id: 0000-0003-0274-9026
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
2021 (Engelska)Ingår i: Lecture Notes in Computer Science: Modeling Decisions for Artificial Intelligence / [ed] V. Torra & Y. Narukawa, Springer Science and Business Media Deutschland GmbH , 2021, Vol. 12898, s. 193-204Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Interpretable models make it possible to understand individual predictions, and are in many domains considered mandatory for user acceptance and trust. If coupled with communicated algorithmic confidence, interpretable models become even more informative, also making it possible to assess and compare the confidence expressed by the models in different predictions. To earn a user’s appropriate trust, however, the communicated algorithmic confidence must also be well-calibrated. In this paper, we suggest a novel way of extending Venn-Abers predictors to multi-class problems. The approach is applied to decision trees, providing well-calibrated probability intervals in the leaves. The result is one interpretable model with valid and sharp probability intervals, ready for inspection and analysis. In the experimentation, the proposed method is verified using 20 publicly available data sets showing that the generated models are indeed well-calibrated.

Ort, förlag, år, upplaga, sidor
Springer Science and Business Media Deutschland GmbH , 2021. Vol. 12898, s. 193-204
Nyckelord [en]
Algorithmics, Data set, Individual prediction, Multi-class models, Multiclass problem, Probability intervals, Users' acceptance, Decision trees
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:hj:diva-54806DOI: 10.1007/978-3-030-85529-1_16Scopus ID: 2-s2.0-85115844466ISBN: 9783030855284 (tryckt)ISBN: 9783030855291 (digital)OAI: oai:DiVA.org:hj-54806DiVA, id: diva2:1600198
Konferens
18th International Conference, MDAI 2021, Umeå, Sweden, September 27–30, 2021, Proceedings
Forskningsfinansiär
KK-stiftelsen, DATAKIND 20190194Tillgänglig från: 2021-10-04 Skapad: 2021-10-04 Senast uppdaterad: 2021-10-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Johansson, UlfLöfström, Tuwe

Sök vidare i DiVA

Av författaren/redaktören
Johansson, UlfLöfström, Tuwe
Av organisationen
Jönköping AI Lab (JAIL)
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 112 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf