Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Adapted Model of Cognitive Digital Twins for Building Lifecycle Management
Jönköping University, Tekniska Högskolan, JTH, Byggnadsteknik och belysningsvetenskap.ORCID-id: 0000-0003-4288-9904
Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
Department of Architecture, Faculty of Architecture, Akdeniz University, Antalya, Turkey.
Vocational School of Technical Sciences, Akdeniz University, Antalya, Turkey.
2021 (Engelska)Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 11, nr 9, artikel-id 4276Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In the digital transformation era in the Architecture, Engineering, and Construction (AEC) industry, Cognitive Digital Twins (CDT) are introduced as part of the next level of process automation and control towards Construction 4.0. CDT incorporates cognitive abilities to detect complex and unpredictable actions and reason about dynamic process optimization strategies to support decision-making in building lifecycle management (BLM). Nevertheless, there is a lack of understanding of the real impact of CDT integration, Machine Learning (ML), Cyber-Physical Systems (CPS), Big Data, Artificial Intelligence (AI), and Internet of Things (IoT), all connected to self-learning hybrid models with proactive cognitive capabilities for different phases of the building asset lifecycle. This study investigates the applicability, interoperability, and integrability of an adapted model of CDT for BLM to identify and close this gap. Surveys of industry experts were performed focusing on life cycle-centric applicability, interoperability, and the CDT model’s integration in practice besides decision support capabilities and AEC industry insights. The evaluation of the adapted model of CDT model support approaching the development of CDT for process optimization and decision-making purposes, as well as integrability enablers confirms progression towards Construction 4.0.

Ort, förlag, år, upplaga, sidor
MDPI, 2021. Vol. 11, nr 9, artikel-id 4276
Nyckelord [en]
cognitive, digital twins, building lifecycle management, artificial intelligence, IoT, decision support, self-learning, optimization
Nationell ämneskategori
Husbyggnad
Identifikatorer
URN: urn:nbn:se:hj:diva-52446DOI: 10.3390/app11094276ISI: 000649933800001Scopus ID: 2-s2.0-85106036456Lokalt ID: GOA;intsam;52446OAI: oai:DiVA.org:hj-52446DiVA, id: diva2:1554084
Tillgänglig från: 2021-05-11 Skapad: 2021-05-11 Senast uppdaterad: 2021-06-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Yitmen, Ibrahim

Sök vidare i DiVA

Av författaren/redaktören
Yitmen, Ibrahim
Av organisationen
JTH, Byggnadsteknik och belysningsvetenskap
I samma tidskrift
Applied Sciences
Husbyggnad

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 246 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf