Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis of finite element methods for vector Laplacians on surfaces
Jönköping University, Tekniska Högskolan, JTH, Material och tillverkning. Jonkoping Univ, Dept Mech Engn, SE-55111 Jonkoping, Sweden..ORCID-id: 0000-0001-7352-1550
Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden..
Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden..
2020 (Engelska)Ingår i: IMA Journal of Numerical Analysis, ISSN 0272-4979, E-ISSN 1464-3642, Vol. 40, nr 3, s. 1652-1701Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We develop a finite element method for the vector Laplacian based on the covariant derivative of tangential vector fields on surfaces embedded in R-3. Closely related operators arise in models of flow on surfaces as well as elastic membranes and shells. The method is based on standard continuous parametric Lagrange elements that describe a R-3 vector field on the surface, and the tangent condition is weakly enforced using a penalization term. We derive error estimates that take into account the approximation of both the geometry of the surface and the solution to the partial differential equation. In particular, we note that to achieve optimal order error estimates, in both energy and L-2 norms, the normal approximation used in the penalization term must be of the same order as the approximation of the solution. This can be fulfilled either by using an improved normal in the penalization term, or by increasing the order of the geometry approximation. We also present numerical results using higher-order finite elements that verify our theoretical findings.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2020. Vol. 40, nr 3, s. 1652-1701
Nyckelord [en]
vector Laplacian on surfaces, higher-order finite element method, a priori error estimates
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:hj:diva-50832DOI: 10.1093/imanum/drz018ISI: 000574428700002Lokalt ID: HOA JTH 2020OAI: oai:DiVA.org:hj-50832DiVA, id: diva2:1476602
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), AM13-0029Vetenskapsrådet, 2013-4708, 2017-03911, 2018-05262eSSENCE - An eScience CollaborationTillgänglig från: 2020-10-15 Skapad: 2020-10-15 Senast uppdaterad: 2020-10-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Hansbo, Peter

Sök vidare i DiVA

Av författaren/redaktören
Hansbo, Peter
Av organisationen
JTH, Material och tillverkning
I samma tidskrift
IMA Journal of Numerical Analysis
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 263 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf