Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Higher order mining for monitoring district heating substations
Department of Computer Science, Blekinge Institute of Technology, Sweden.
Department of Computer Science, Blekinge Institute of Technology, Sweden.
Noda Intelligent Systems Ab, Sweden.
Noda Intelligent Systems Ab, Sweden.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Proceedings - 2019 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2019, Institute of Electrical and Electronics Engineers (IEEE), 2019, s. 382-391, artikel-id 8964173Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We propose a higher order mining (HOM) approach for modelling, monitoring and analyzing district heating (DH) substations' operational behaviour and performance. HOM is concerned with mining over patterns rather than primary or raw data. The proposed approach uses a combination of different data analysis techniques such as sequential pattern mining, clustering analysis, consensus clustering and minimum spanning tree (MST). Initially, a substation's operational behaviour is modeled by extracting weekly patterns and performing clustering analysis. The substation's performance is monitored by assessing its modeled behaviour for every two consecutive weeks. In case some significant difference is observed, further analysis is performed by integrating the built models into a consensus clustering and applying an MST for identifying deviating behaviours. The results of the study show that our method is robust for detecting deviating and sub-optimal behaviours of DH substations. In addition, the proposed method can facilitate domain experts in the interpretation and understanding of the substations' behaviour and performance by providing different data analysis and visualization techniques. 

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2019. s. 382-391, artikel-id 8964173
Nyckelord [en]
Clustering Analysis, Data Mining, District Heating Substations, Fault Detection, Higher Order Mining, Minimum Spanning Tree, Outlier Detection, Advanced Analytics, Anomaly detection, Clustering algorithms, Data visualization, District heating, Fault tree analysis, Fiber optics, Trees (mathematics), Consensus clustering, Data analysis techniques, Heating substations, Higher-order, Minimum spanning trees, Sequential-pattern mining, Visualization technique, Cluster analysis
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:hj:diva-47935DOI: 10.1109/DSAA.2019.00053ISI: 000540890900038Scopus ID: 2-s2.0-85079289447ISBN: 9781728144931 (tryckt)OAI: oai:DiVA.org:hj-47935DiVA, id: diva2:1412076
Konferens
6th IEEE International Conference on Data Science and Advanced Analytics, DSAA 2019, Washington, United States, 5 - 8 October, 2019
Forskningsfinansiär
KK-stiftelsen, 20140032
Anmärkning

Funding details: Stiftelsen för Kunskaps- och Kompetensutveckling, KK, 201400

This work is part of the research project “Scalable resource-efficient systems for big data analytics“ funded by the Knowledge Foundation (grant: 20140032) in Sweden.

Tillgänglig från: 2020-03-05 Skapad: 2020-03-05 Senast uppdaterad: 2021-03-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Lavesson, Niklas

Sök vidare i DiVA

Av författaren/redaktören
Lavesson, Niklas
Av organisationen
Jönköping AI Lab (JAIL)
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 367 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf