Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classifying natural forests using LiDAR data
Högskolan i Jönköping, Tekniska Högskolan, JTH, Datateknik och informatik.
Högskolan i Jönköping, Tekniska Högskolan, JTH, Datateknik och informatik.
2019 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)Alternativ titel
Klassificering av nyckelbiotoper med hjälp av LiDAR-data (Svenska)
Abstract [en]

In forestry, natural forests are forest areas with high biodiversity, in need of preservation. The current mapping of natural forests is a tedious task that requires manual labor that could possibly be automated.

In this paper we explore the main features used by a random forest algorithm to classify natural forest and managed forest in northern Sweden. The goal was to create a model with a substantial strength of agreement, meaning a Kappa value of 0.61 or higher, placing the model in the same range as models produced in previous research.

We used raster data gathered from airborne LiDAR, combined with labeled sample areas, both supplied by the Swedish Forest Agency. Two experiments were performed with different features. Experiment 1 used features extracted using methods inspired from previous research while Experiment 2 further added upon those features. From the total number of used sample areas (n=2882), 70% was used to train the models and 30% was used for evaluation.

The result was a Kappa value of 0.26 for Experiment 1 and 0.32 for Experiment 2. Features shown to be prominent are features derived from canopy height, where the supplied data also had the highest resolution. Percentiles, kurtosis and canopy crown areas derived from the canopy height were shown to be the most important for classification. The results fell short of our goal, possibly indicating a range of flaws in the data used. The size of the sample areas and resolution of raster data are likely important factors when extracting features, playing a large role in the produced model’s performance.

Ort, förlag, år, upplaga, sidor
2019. , s. 39
Nyckelord [en]
Geographic information systems, Classification and regression trees, Supervised learning by classification
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:hj:diva-45267ISRN: JU-JTH-DTA-1-20190076OAI: oai:DiVA.org:hj-45267DiVA, id: diva2:1334914
Externt samarbete
Skogsstyrelsen
Ämne / kurs
JTH, Datateknik
Presentation
2019-06-13, E1022, Gjuterigatan 5, Jönköping, 10:00 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2019-07-05 Skapad: 2019-07-03 Senast uppdaterad: 2019-07-05Bibliografiskt granskad

Open Access i DiVA

Classifying natural forests using LiDAR data(6740 kB)35 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 6740 kBChecksumma SHA-512
68d3852b3d0d72d7a1870136fedf09e0841b81f9d89a74434d098707ebc8bfb3ac36ffc22df90809a436bdf09b93ba23c85a21f2dde2e136c03d3c65edf45ece
Typ fulltextMimetyp application/pdf

Av organisationen
JTH, Datateknik och informatik
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 35 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 116 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf