Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluating Multi-Attributes on Cause and Effect Relationship Visualization
Högskolan i Skövde, Institutionen för informationsteknologi.
Högskolan i Skövde, Institutionen för informationsteknologi.
Högskolan i Skövde, Institutionen för informationsteknologi.ORCID-id: 0000-0003-2900-9335
Högskolan i Skövde, Institutionen för informationsteknologi.ORCID-id: 0000-0001-6245-5850
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017): Volumne 3: IVAPP / [ed] Alexandru Telea, Jose Braz, Lars Linsen, SciTePress , 2017, s. 64-74Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents findings about visual representations of cause and effect relationship's direction, strength, and uncertainty based on an online user study. While previous researches focus on accuracy and few attributes, our empirical user study examines accuracy and the subjective ratings on three different attributes of a cause and effect relationship edge. The cause and effect direction was depicted by arrows and tapered lines; causal strength by hue, width, and a numeric value; and certainty by granularity, brightness, fuzziness, and a numeric value. Our findings point out that both arrows and tapered cues work well to represent causal direction. Depictions with width showed higher conjunct accuracy and were more preferred than that with hue. Depictions with brightness and fuzziness showed higher accuracy and were marked more understandable than granularity. In general, depictions with hue and granularity performed less accurately and were not preferred compared to the ones with numbers or with width and brightness.

Ort, förlag, år, upplaga, sidor
SciTePress , 2017. s. 64-74
Nyckelord [en]
Cause and effect, uncertainty, evaluation, graph visualization
Nationell ämneskategori
Data- och informationsvetenskap
Forskningsämne
Skövde Artificial Intelligence Lab (SAIL); INF301 Data Science
Identifikatorer
URN: urn:nbn:se:hj:diva-43243DOI: 10.5220/0006102300640074ISI: 000444939500005Scopus ID: 2-s2.0-85040593124Lokalt ID: 0;0;miljJAILISBN: 978-989-758-228-8 (tryckt)OAI: oai:DiVA.org:hj-43243DiVA, id: diva2:1293748
Konferens
8th International Conference on Information Visualization Theory and Applications (IVAPP), part of the 12th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), February 27-March 1, 2017, in Porto, Portugal
Forskningsfinansiär
KK-stiftelsenTillgänglig från: 2019-03-05 Skapad: 2019-03-05 Senast uppdaterad: 2019-08-23Bibliografiskt granskad

Open Access i DiVA

fulltext(1970 kB)146 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1970 kBChecksumma SHA-512
7d09612102be1c1113c72d6d69ceb490f4bce95b8f999d2a002f98cac028701be01e12599f4de950717c8625464db55c6786275417663e97a3aa18387d1efd83
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Bae, JuheeVentocilla, ElioRiveiro, MariaHelldin, ToveFalkman, Göran

Sök vidare i DiVA

Av författaren/redaktören
Bae, JuheeVentocilla, ElioRiveiro, MariaHelldin, ToveFalkman, Göran
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 146 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 157 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf