Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mining Comparative Opinions using Multi-label Machine Learning Techniques: A case study to identify comparative opinions, based on product aspects, and their sentiment classification, in online customer reviews.
Högskolan i Jönköping, Tekniska Högskolan, JTH, Datateknik och informatik.
2018 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 30 poäng / 45 hpStudentuppsats (Examensarbete)
Abstract [en]

There is a high demand to summarize and analyze the opinions in online customer reviews. Sentiment analysis is one of the study fields in this area. Mining comparative opinions is an important application of sentiment analysis. It includes identifying the comparative opinions and the aspects that are compared. It also identifies the sentiment classification of the opinion as positive or negative. This helps businesses to make effective decisions in the development and promotion of their products and services, and to better understand their competitors. Different approaches could be used to address this sentiment analysis application, such as Machine Learning. The application is a multi-label classification problem from a machine learning perspective. This paper presents a case study to evaluate three multi-label machine learning classification techniques in addressing the problem. Empirical experiments are conducted on a domain-independent dataset of online customer reviews from Amazon for the evaluation purpose.

Ort, förlag, år, upplaga, sidor
2018. , s. 79
Nyckelord [en]
Sentiment Analysis, Opinion Mining, Machine Learning, Multi-label, Text Classification, Comparative, Aspect-based
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:hj:diva-42974ISRN: JU-JTH-PRU-2-20190120OAI: oai:DiVA.org:hj-42974DiVA, id: diva2:1288571
Ämne / kurs
JTH, Datateknik
Handledare
Examinatorer
Tillgänglig från: 2019-02-28 Skapad: 2019-02-13 Senast uppdaterad: 2019-03-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Haj Ahmad, Yassin
Av organisationen
JTH, Datateknik och informatik
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 183 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf