Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stabilized CutFEM for the convection problem on surfaces
UCL, Department of Mathematics, London, United Kingdom.
Högskolan i Jönköping, Tekniska Högskolan, JTH, Material och tillverkning.ORCID-id: 0000-0001-7352-1550
Umeå Universitet, Department of Mathematics and Mathematical Statistics, Umeå, Sweden.
The Royal Institute of Technology (KTH), Department of Mathematics, Stockholm, Sweden.
2019 (Engelska)Ingår i: Numerische Mathematik, ISSN 0029-599X, E-ISSN 0945-3245, Vol. 141, nr 1, s. 103-139Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We develop a stabilized cut finite element method for the convection problem on a surface based on continuous piecewise linear approximation and gradient jump stabilization terms. The discrete piecewise linear surface cuts through a background mesh consisting of tetrahedra in an arbitrary way and the finite element space consists of piecewise linear continuous functions defined on the background mesh. The variational form involves integrals on the surface and the gradient jump stabilization term is defined on the full faces of the tetrahedra. The stabilization term serves two purposes: first the method is stabilized and secondly the resulting linear system of equations is algebraically stable. We establish stability results that are analogous to the standard meshed flat case and prove h3 / 2 order convergence in the natural norm associated with the method and that the full gradient enjoys h3 / 4 order of convergence in L2. We also show that the condition number of the stiffness matrix is bounded by h- 2. Finally, our results are verified by numerical examples. 

Ort, förlag, år, upplaga, sidor
Springer, 2019. Vol. 141, nr 1, s. 103-139
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:hj:diva-41510DOI: 10.1007/s00211-018-0989-8ISI: 000457025700004Scopus ID: 2-s2.0-85052521788Lokalt ID: HOA JTH 2019;JTHMaterialISOAI: oai:DiVA.org:hj-41510DiVA, id: diva2:1249600
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), AM13-0029Vetenskapsrådet, 2011-4992Vetenskapsrådet, 2013-4708Vetenskapsrådet, 2014-4804eSSENCE - An eScience CollaborationTillgänglig från: 2018-09-19 Skapad: 2018-09-19 Senast uppdaterad: 2019-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Hansbo, Peter

Sök vidare i DiVA

Av författaren/redaktören
Hansbo, Peter
Av organisationen
JTH, Material och tillverkning
I samma tidskrift
Numerische Mathematik
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 260 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf