Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Conformal Prediction Using Decision Trees
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0412-6199
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0274-9026
2013 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Conformal prediction is a relatively new framework in which the predictive models output sets of predictions with a bound on the error rate, i.e., in a classification context, the probability of excluding the correct class label is lower than a predefined significance level. An investigation of the use of decision trees within the conformal prediction framework is presented, with the overall purpose to determine the effect of different algorithmic choices, including split criterion, pruning scheme and way to calculate the probability estimates. Since the error rate is bounded by the framework, the most important property of conformal predictors is efficiency, which concerns minimizing the number of elements in the output prediction sets. Results from one of the largest empirical investigations to date within the conformal prediction framework are presented, showing that in order to optimize efficiency, the decision trees should be induced using no pruning and with smoothed probability estimates. The choice of split criterion to use for the actual induction of the trees did not turn out to have any major impact on the efficiency. Finally, the experimentation also showed that when using decision trees, standard inductive conformal prediction was as efficient as the recently suggested method cross-conformal prediction. This is an encouraging results since cross-conformal prediction uses several decision trees, thus sacrificing the interpretability of a single decision tree.

Ort, förlag, år, upplaga, sidor
IEEE, 2013.
Nyckelord [en]
Conformal prediction, Decision trees, Data mining, Machine Learning
Nationell ämneskategori
Datavetenskap (datalogi) Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:hj:diva-38089DOI: 10.1109/ICDM.2013.85ISI: 000332874200034Lokalt ID: 0;0;miljJAILOAI: oai:DiVA.org:hj-38089DiVA, id: diva2:1163336
Konferens
IEEE International Conference on Data Mining
Anmärkning

Sponsorship:

Swedish Foundation

for Strategic Research through the project High-Performance

Data Mining for Drug Effect Detection (IIS11-0053) and the

Knowledge Foundation through the project Big Data Analytics

by Online Ensemble Learning (20120192)

Tillgänglig från: 2017-12-06 Skapad: 2017-12-06 Senast uppdaterad: 2019-08-23Bibliografiskt granskad

Open Access i DiVA

fulltext(215 kB)320 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 215 kBChecksumma SHA-512
5f4dbb1db04da3d89fc09eabd9d12f6cd93c8a7fa9b3940997eaa814bca4331a255be4378b05374b646f6b4ac17bbc6e26a5bb5c4b91bba133f70ed779ced114
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Johansson, UlfLöfström, Tuve

Sök vidare i DiVA

Av författaren/redaktören
Johansson, UlfLöfström, Tuve
Datavetenskap (datalogi)Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 320 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 195 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf