Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Overproduce-and-Select: The Grim Reality
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0412-6199
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0274-9026
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
2013 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Overproduce-and-select (OPAS) is a frequently used paradigm for building ensembles. In static OPAS, a large number of base classifiers are trained, before a subset of the available models is selected to be combined into the final ensemble. In general, the selected classifiers are supposed to be accurate and diverse for the OPAS strategy to result in highly accurate ensembles, but exactly how this is enforced in the selection process is not obvious. Most often, either individual models or ensembles are evaluated, using some performance metric, on available and labeled data. Naturally, the underlying assumption is that an observed advantage for the models (or the resulting ensemble) will carry over to test data. In the experimental study, a typical static OPAS scenario, using a pool of artificial neural networks and a number of very natural and frequently used performance measures, is evaluated on 22 publicly available data sets. The discouraging result is that although a fairly large proportion of the ensembles obtained higher test set accuracies, compared to using the entire pool as the ensemble, none of the selection criteria could be used to identify these highly accurate ensembles. Despite only investigating a specific scenario, we argue that the settings used are typical for static OPAS, thus making the results general enough to question the entire paradigm.

Ort, förlag, år, upplaga, sidor
IEEE, 2013.
Nyckelord [en]
Ensembles, Neural networks, Overproduce-and-select, Data mining, Machine Learning
Nationell ämneskategori
Datavetenskap (datalogi) Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:hj:diva-38094DOI: 10.1109/CIEL.2013.6613140ISI: 000335317800008Lokalt ID: 0;0;miljJAILOAI: oai:DiVA.org:hj-38094DiVA, id: diva2:1163318
Konferens
IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL), 16-19 April 2013 , Singapore
Anmärkning

Sponsorship:

Swedish Foundation for

Strategic Research through the project High-Performance Data

Mining for Drug Effect Detection (ref. no. IIS11-0053)

Tillgänglig från: 2017-12-06 Skapad: 2017-12-06 Senast uppdaterad: 2019-08-23Bibliografiskt granskad

Open Access i DiVA

fulltext(199 kB)123 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 199 kBChecksumma SHA-512
b41444d3c4201bf9469d3ff306c925ab4c3001c3d5a882a0549546dfac9caf25a9714464d1f22fc44796cf3ed49d35dd2053230da803724b8ec8e22a72ada932
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Johansson, UlfLöfström, Tuve

Sök vidare i DiVA

Av författaren/redaktören
Johansson, UlfLöfström, Tuve
Datavetenskap (datalogi)Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 123 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 233 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf