RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting with Confidence from Survival Data
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden.
Högskolan i Jönköping, Tekniska Högskolan, JTH, Datateknik och informatik, JTH, Jönköping AI Lab (JAIL).ORCID-id: 0000-0003-0412-6199
Scania CV AB, Sweden.
2019 (Engelska)Ingår i: Conformal and Probabilistic Prediction and Applications / [ed] Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, Evgueni Smirnov, 2019, s. 123-141Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Survival modeling concerns predicting whether or not an event will occur before or on a given point in time. In a recent study, the conformal prediction framework was applied to this task, and so-called conformal random survival forest was proposed. It was empirically shown that the error level of this model indeed is very close to the provided confidence level, and also that the error for predicting each outcome, i.e., event or no-event, can be controlled separately by employing a Mondrian approach. The addressed task concerned making predictions for time points as provided by the underlying distribution. However, if one instead is interested in making predictions with respect to some specific time point, the guarantee of the conformal prediction framework no longer holds, as one is effectively considering a sample from another distribution than from which the calibration instances have been drawn. In this study, we propose a modification of the approach for specific time points, which transforms the problem into a binary classification task, thereby allowing the error level to be controlled. The latter is demonstrated by an empirical investigation using both a collection of publicly available datasets and two in-house datasets from a truck manufacturing company.

Ort, förlag, år, upplaga, sidor
2019. s. 123-141
Serie
Proceedings of Machine Learning Research, ISSN 2640-3498 ; 105
Nyckelord [en]
Conformal prediction, survival modeling, random forests.
Nationell ämneskategori
Bioinformatik (beräkningsbiologi)
Identifikatorer
URN: urn:nbn:se:hj:diva-46802OAI: oai:DiVA.org:hj-46802DiVA, id: diva2:1369228
Konferens
Proceedings of the Eighth Symposium on Conformal and Probabilistic Prediction and Applications, 9-11 September 2019, Golden Sands, Bulgaria
Tillgänglig från: 2019-11-11 Skapad: 2019-11-11 Senast uppdaterad: 2019-11-11Bibliografiskt granskad

Open Access i DiVA

fulltext(673 kB)11 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 673 kBChecksumma SHA-512
2116a5139ef439d3d3a470ef218a76dddf1dae7a943718d148123d4d67d7daf0dc66145ca4c77988ab4855e643608cda419892d1896826fbec564b9ea052a92d
Typ fulltextMimetyp application/pdf

Personposter BETA

Johansson, Ulf

Sök vidare i DiVA

Av författaren/redaktören
Johansson, Ulf
Av organisationen
JTH, Jönköping AI Lab (JAIL)
Bioinformatik (beräkningsbiologi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 11 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 93 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf