RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
One Tree to Explain Them All
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0412-6199
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0274-9026
2011 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Random forest is an often used ensemble technique, renowned for its high predictive performance. Random forests models are, however, due to their sheer complexity inherently opaque, making human interpretation and analysis impossible. This paper presents a method of approximating the random forest with just one decision tree. The approach uses oracle coaching, a recently suggested technique where a weaker but transparent model is generated using combinations of regular training data and test data initially labeled by a strong classifier, called the oracle. In this study, the random forest plays the part of the oracle, while the transparent models are decision trees generated by either the standard tree inducer J48, or by evolving genetic programs. Evaluation on 30 data sets from the UCI repository shows that oracle coaching significantly improves both accuracy and area under ROC curve, compared to using training data only. As a matter of fact, resulting single tree models are as accurate as the random forest, on the specific test instances. Most importantly, this is not achieved by inducing or evolving huge trees having perfect fidelity; a large majority of all trees are instead rather compact and clearly comprehensible. The experiments also show that the evolution outperformed J48, with regard to accuracy, but that this came at the expense of slightly larger trees.

Ort, förlag, år, upplaga, sidor
IEEE, 2011.
Nyckelord [en]
genetic programming, random forest, oracle coaching, decision trees, Machine learning
Nyckelord [sv]
Data mining
Nationell ämneskategori
Datavetenskap (datalogi) Data- och informationsvetenskap
Forskningsämne
Handel och IT
Identifikatorer
URN: urn:nbn:se:hj:diva-45800Lokalt ID: 0;0;miljJAILISBN: 978-1-4244-7834-7 (tryckt)OAI: oai:DiVA.org:hj-45800DiVA, id: diva2:1348946
Konferens
IEEE Congress on Evolutionary Computation (CEC)
Anmärkning

Sponsorship:

This work was supported by the INFUSIS project www.his.se/infusis at the University of Skövde, Sweden, in partnership with the Swedish Knowledge Foundation under grant 2008/0502.

Tillgänglig från: 2019-09-06 Skapad: 2019-09-06 Senast uppdaterad: 2019-09-06Bibliografiskt granskad

Open Access i DiVA

fulltext(116 kB)5 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 116 kBChecksumma SHA-512
9e110b053bb404bc781ba62a064543de61f921063b10402e7b68a87cd9bdfbb0594fea1e25d87d74a0aaf19027c485c6f96fb8b2b513a3115728c9195d7e3e5a
Typ fulltextMimetyp application/pdf

Personposter BETA

Johansson, UlfSönströd, CeciliaLöfström, Tuve

Sök vidare i DiVA

Av författaren/redaktören
Johansson, UlfSönströd, CeciliaLöfström, Tuve
Datavetenskap (datalogi)Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 5 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 54 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf