Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Visual Analytics for Informed Decisions
Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Informationsteknik. (JTH. Forskningsmiljö Informationsteknik, JTH. Research area Information Engineering, Model Driven System Realisation)
Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsmiljö Informationsteknik.
Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsområde Informationsteknik. (Information Engineering)ORCID-id: 0000-0002-5881-0669
2013 (engelsk)Konferansepaper, Poster (with or without abstract) (Fagfellevurdert)
Abstract [en]

Energy efficiency heavily depends on effective building construction. It is more appropriate if one can predict energy efficiency of the house before building it.Here simple application of the Nearest Neighbors lazy learning techniques improveestimating the energy efficiency of a building. Visual analytics tools considered a smart solution as a function of modeling parameters by using Machine Learning framework in a suitable way. It is a powerful way to improve energy saving in building construction and making informed decisions.“LIONsolver with a novel implementation of machine learning plus optimization provides a highly advanced environment for predictive analytics. In this poster a case study from the LIONbook is presented where the energy consumption for a newhouse project is predicted. The predictive analytics environment of LIONsolver in this case study has transformed the optimal design from a very complicated and time consuming process to a very speedy and simple strategy for design and decisionmaking.”

sted, utgiver, år, opplag, sider
Sapienza, 2013.
Emneord [en]
Decision Making, Integrated optimization, Machine learning, Optimization tool
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-23116OAI: oai:DiVA.org:hj-23116DiVA, id: diva2:687755
Konferanse
The International CAE Conference, October 21-22 2013, Verona, Italy
Tilgjengelig fra: 2014-01-15 Laget: 2014-01-15 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

http://www.caeconference.com/poster/pdf/07_Vaezipour_Seigerroth_Mosavi.pdf

Personposter BETA

Seigerroth, Ulf

Søk i DiVA

Av forfatter/redaktør
Seigerroth, Ulf
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 286 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf