Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing Distributional Properties of High-Dimensional Data
Högskolan i Jönköping, Internationella Handelshögskolan, IHH, Economics, Finance and Statistics.
2013 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This doctoral thesis consists of five papers in the field of multivariate statistical analysis of high-dimensional data. Because of the wide application and methodological scope, the individual papers in the thesis necessarily target a number of different statistical issues. In the first paper, Monte Carlo simulations are used to investigate a number of tests of multivariate non-normality with respect to their increasing dimension asymptotic (IDA) properties as the dimension p grows proportionally with the number of observations n such that p/n → c where is a constant. In the second paper a new test for non-normality that utilizes principal components is proposed for cases when p/n → c. The power and size of the test are examined through Monte Carlo simulations where different combinations of p and n are used.

The third paper treats the problem of the relation between the second central moment of a distribution to its first raw moment. In order to make inference of the systematic relationship between mean and standard deviation, a model that captures this relationship by a slope parameter (β) is proposed and three different estimators of this parameter are developed and their consistency proven in the context where the number of variables increases proportionally to the number of observations. In the fourth paper, a Bayesian regression approach has been taken to model the relationship between the mean and standard deviation of the excess return and to test hypotheses regarding the β parameter. An empirical example involving Stockholm exchange market data is included. Then finally in the fifth paper three new methods to test for panel cointegration

sted, utgiver, år, opplag, sider
Jönköping: Jönköping International Business School , 2013. , s. 27
Serie
JIBS Dissertation Series, ISSN 1403-0470 ; 092
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-22547ISBN: 978-91-86345-46-4 (tryckt)OAI: oai:DiVA.org:hj-22547DiVA, id: diva2:662586
Disputas
2013-11-29, B1014, Jönköping International Business School, Gjuterigatan 5, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2013-11-07 Laget: 2013-11-07 Sist oppdatert: 2013-11-07bibliografisk kontrollert
Delarbeid
1. Assessing Normality of High-Dimensional Data
Åpne denne publikasjonen i ny fane eller vindu >>Assessing Normality of High-Dimensional Data
2013 (engelsk)Inngår i: Communications in statistics. Simulation and computation, ISSN 0361-0918, E-ISSN 1532-4141, Vol. 42, nr 2, s. 360-369Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The assumption of normality is crucial in many multivariate inference methods and may be even more important when the dimension of data is proportional to the sample size. It is therefore necessary that tests for multivariate non normality remain well behaved in such settings. In this article, we examine the properties of three common moment-based tests for non normality under increasing dimension asymptotics (IDA). It is demonstrated through Monte Carlo simulations that one of the tests is inconsistent under IDA and that one of them stands out as uniformly superior to the other two.

Emneord
Multivariate skewness and kurtosis, Increasing dimension, Asymptotics, Non normality
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-16439 (URN)10.1080/03610918.2011.636164 (DOI)2-s2.0-84870900232 (Scopus ID)
Tilgjengelig fra: 2011-10-24 Laget: 2011-10-24 Sist oppdatert: 2019-02-21bibliografisk kontrollert
2. Using Principal Components to Test Normality of High-Dimensional Data
Åpne denne publikasjonen i ny fane eller vindu >>Using Principal Components to Test Normality of High-Dimensional Data
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-22544 (URN)
Tilgjengelig fra: 2013-11-07 Laget: 2013-11-07 Sist oppdatert: 2013-11-07bibliografisk kontrollert
3. Estimating mean-standard deviation ratios of financial data
Åpne denne publikasjonen i ny fane eller vindu >>Estimating mean-standard deviation ratios of financial data
2012 (engelsk)Inngår i: Journal of Applied Statistics, ISSN 0266-4763, E-ISSN 1360-0532, Vol. 39, nr 3, s. 657-671Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This article treats the problem of linking the relation between excess return and risk of financial assets when the returns follow a factor structure. The authors propose three different estimators and their consistencies are established in cases when the number of assets in the cross-section (n) and the number of observations over time (T) are of comparable size. An empirical investigation is conducted on the Stockholm stock exchange market where the mean-standard deviation ratio is calculated for small- mid- and large cap segments, respectively.

Emneord
return-risk ratio, increasing dimension asymptotics, coefficient of variation, Arbitrage Pricing Theory model
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-15730 (URN)10.1080/02664763.2011.610443 (DOI)2-s2.0-84856881341 (Scopus ID)
Tilgjengelig fra: 2011-08-01 Laget: 2011-08-01 Sist oppdatert: 2019-02-21bibliografisk kontrollert
4. A Bayesian Approach for Estimating Mean-Standard Deviation Ratios of Financial Data
Åpne denne publikasjonen i ny fane eller vindu >>A Bayesian Approach for Estimating Mean-Standard Deviation Ratios of Financial Data
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-22545 (URN)
Tilgjengelig fra: 2013-11-07 Laget: 2013-11-07 Sist oppdatert: 2013-11-07bibliografisk kontrollert
5. Testing for Panel Cointegration in High-Dimensional Data in the Presence of Cross-Sectional Dependency
Åpne denne publikasjonen i ny fane eller vindu >>Testing for Panel Cointegration in High-Dimensional Data in the Presence of Cross-Sectional Dependency
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-22546 (URN)
Tilgjengelig fra: 2013-11-07 Laget: 2013-11-07 Sist oppdatert: 2013-11-07bibliografisk kontrollert

Open Access i DiVA

fulltext(512 kB)767 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 512 kBChecksum SHA-512
25662463dab1200e0db54fa922433870d521ed8eb6ac278dd3ae5cfa4d45bbe0845259ff0e3ea8f4cf12970727cb0376cb5fc651c996eda3c57da79d8308e9c9
Type fulltextMimetype application/pdf

Personposter BETA

Mansoor, Rashid

Søk i DiVA

Av forfatter/redaktør
Mansoor, Rashid
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 767 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 492 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf