Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A bootstrap test for causality with endogenous lag length choice: theory and application in finance
Högskolan i Jönköping, Internationella Handelshögskolan, IHH, Economics, Finance and Statistics.
UAE University, Department of Economics and Finance.
2012 (engelsk)Inngår i: Journal of economic studies, ISSN 0144-3585, E-ISSN 1758-7387, Vol. 39, nr 2, s. 144-160Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Purpose – In all existing theoretical papers on causality it is assumed that the lag length is known a priori. However, in applied research the lag length has to be selected before testing for causality. The purpose of this paper is to suggest that in investigating the effectiveness of various Granger causality testing methodologies, including those using bootstrapping, the lag length choice should be endogenized, by which we mean the data-driven preselection of lag length should be taken into account.

Design/methodology/approach – The size and power of a bootstrap test with endogenized lag-length choice are investigated by simulation methods. A statistical software component is produced to implement the test, which is available online.

Findings – The simulation results show that this test performs well. An application of the test provides empirical support for the hypothesis that the UAE financial market is integrated with the US market.

Social implications – The empirical results based on this test are expected to be more precise.

Originality/value – This paper considers a bootstrap test for causality with endogenous lag order. This test has superior properties compared to existing causality tests in terms of size, with similar if not better power and it is robust to ARCH effects that usually characterize financial data. Practitioners interested in causal inference based on time series data might find the test valuable.

sted, utgiver, år, opplag, sider
2012. Vol. 39, nr 2, s. 144-160
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-20471DOI: 10.1108/01443581211222635Scopus ID: 2-s2.0-84860856886Lokal ID: IHHEFSISOAI: oai:DiVA.org:hj-20471DiVA, id: diva2:600634
Tilgjengelig fra: 2013-01-25 Laget: 2013-01-25 Sist oppdatert: 2019-02-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Hacker, R. Scott

Søk i DiVA

Av forfatter/redaktør
Hacker, R. Scott
Av organisasjonen
I samme tidsskrift
Journal of economic studies

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 631 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf