Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Granger Causality Test in the Presence of Spillover Effects
Högskolan i Jönköping, Internationella Handelshögskolan, IHH, Nationalekonomi.
Högskolan i Jönköping, Internationella Handelshögskolan, IHH, Nationalekonomi.
2009 (engelsk)Inngår i: Communications in statistics. Simulation and computation, ISSN 0361-0918, E-ISSN 1532-4141, Vol. 38, nr 10, s. 2039-2059Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this article, we investigate the effect of spillover (i.e., causality in variance) on the reliability of Granger causality test based on ordinary least square estimates. We studied eight different versions of the test both, with and without Whites heteroskedasticity consistent covariance matrix (HCCME). The properties of the tests are investigated by means of a Monte Carlo experiment where 21 different data generating processes (DGP) are used and a number of factors that might affect the test are varied. The result shows that the best choice to test for Granger causality under the presence of spillover is the Lagrange Multiplier test with HCCME.

sted, utgiver, år, opplag, sider
2009. Vol. 38, nr 10, s. 2039-2059
Emneord [en]
GARCH, Granger causality test, Power, Size, Spillover
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-13400DOI: 10.1080/03610910903243695OAI: oai:DiVA.org:hj-13400DiVA, id: diva2:354365
Tilgjengelig fra: 2010-10-01 Laget: 2010-10-01 Sist oppdatert: 2017-12-12bibliografisk kontrollert
Inngår i avhandling
1. Issues of multicollinearity and conditional heteroscadasticity in time series econometrics
Åpne denne publikasjonen i ny fane eller vindu >>Issues of multicollinearity and conditional heteroscadasticity in time series econometrics
2012 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Jönköping: Jönköping International Business School, 2012. s. 19
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-17739 (URN)9789186345273 (ISBN)
Disputas
2012-03-16, 09:41 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2012-03-01 Laget: 2012-03-01 Sist oppdatert: 2016-03-09bibliografisk kontrollert
2. Issues of multicollinearity and conditional heteroscedasticy in time series econometrics
Åpne denne publikasjonen i ny fane eller vindu >>Issues of multicollinearity and conditional heteroscedasticy in time series econometrics
2012 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This doctoral thesis consists of four chapters all related to the field of time series econometrics. The main contribution is firstly the development of robust methods when testing for Granger causality in the presence of generalized autoregressive conditional heteroscedasticity (GARCH) and causality-in-variance (i.e. spillover) effects. The second contribution is the development of different shrinkage estimators for count data models which may be used when the explanatory variables are highly inter-correlated.

The first essay investigated the effect of spillover on some tests for causality in a Granger sense. As a remedy to the problem of over-rejection caused by the spillover effects White’s heteroscedasticity consistent covariance matrix is proposed. In the second essay the effect of GARCH errors on the statistical tests for Granger causality is investigated. Here some wavelet denoising methods are proposed and by means of Monte Carlo simulations it is shown that the size properties of the tests based on wavelet filtered data is better than the ones based on raw data.

In the third and fourth essays ridge regression estimators for the Poisson and negative binomial (NB) regression models are investigated respectively. Then finally in the fifth essaya Liu type of estimator is proposed for the NB regression model. By using Monte Carlo simulations it is shown that the estimated MSE is lower for the ridge and Liu type of estimators than maximum likelihood (ML).

sted, utgiver, år, opplag, sider
Jönköping: Jönköping University, Jönköping International Business School, 2012. s. 15
Serie
JIBS Dissertation Series, ISSN 1403-0470 ; 075
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-31977 (URN)978-91-86345-27-3 (ISBN)
Veileder
Tilgjengelig fra: 2016-10-13 Laget: 2016-10-13 Sist oppdatert: 2016-10-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Månsson, KristoferShukur, Ghazi

Søk i DiVA

Av forfatter/redaktør
Månsson, KristoferShukur, Ghazi
Av organisasjonen
I samme tidsskrift
Communications in statistics. Simulation and computation

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 573 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf