Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The heat treatment of Al–Si–Cu–Mg casting alloys
Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsområde Material och tillverkning - gjutning. Högskolan i Jönköping, Tekniska Högskolan, JTH, Maskinteknik.
Högskolan i Jönköping, Tekniska Högskolan, JTH. Forskningsområde Material och tillverkning - gjutning. Högskolan i Jönköping, Tekniska Högskolan, JTH, Maskinteknik.ORCID-id: 0000-0001-6481-5530
2010 (engelsk)Inngår i: Journal of Materials Processing Technology, ISSN 0924-0136, E-ISSN 1873-4774, Vol. 210, nr 10, s. 1249-1259Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Heat treatment of gravity cast aluminium components normally involve a solution heat treatment followed by quenching and subsequent ageing, either naturally or artificially. The mechanical properties of aluminium castings containing Cu and Mg are clearly improved by heat treatment but there are still some uncertainties and contradictions about the phase dissolution, formation of precipitates and the influence of natural and artificial ageing parameters such as time and temperature, on the peak strength of these materials. The present paper reviews over 60 papers in attempt to clarify and map out the influence of each and every sequence that is involved in the heat treatment process on the evolution and kind of precipitates, which in turn determines the mechanical properties of cast aluminium components.

sted, utgiver, år, opplag, sider
Elsevier , 2010. Vol. 210, nr 10, s. 1249-1259
Emneord [en]
Cast aluminium alloys; Heat treatment; Mechanical properties.
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-11308DOI: 10.1016/j.jmatprotec.2010.03.020OAI: oai:DiVA.org:hj-11308DiVA, id: diva2:286570
Tilgjengelig fra: 2010-01-14 Laget: 2010-01-14 Sist oppdatert: 2017-12-12bibliografisk kontrollert
Inngår i avhandling
1. Heat treatment of Al-Si-Cu-Mg casting alloys
Åpne denne publikasjonen i ny fane eller vindu >>Heat treatment of Al-Si-Cu-Mg casting alloys
2011 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Environmental savings can be made by increasing the use of aluminium alloys in the automotive industry as the vehicles can be made lighter. Increasing the knowledge about the heat treatment process is one task in the direction towards this goal. The aim of this work is to investigate and model the heat treatment process for Al-Si casting alloys. Three alloys containing Mg and/or Cu were cast using the gradient solidification technique to achieve three different coarsenesses of the microstructure and a low amount of defects.

Solution treatment was studied by measuring the concentration of Mg, Cu and Si in the α-Al matrix using wavelength dispersive spectroscopy (WDS) after various times at a solution treatment temperature. A diffusion based model was developed which estimates the time needed to obtain a high and homogenous concentration of alloying elements for different alloys, temperatures and coarsenesses of the microstructure. It was shown that the yield strength after artificial ageing is weakly dependent on the coarseness of the microstructure when the solution treatment time is adjusted to achieve complete dissolution and homogenisation.

The shape and position of ageing curves (yield strength versus ageing time) was investigated empirically in this work and by studying the literature in order to differentiate the mechanisms involved. A diffusion based model for prediction of the yield strength after different ageing times was developed for Al-Si-Mg alloys. The model was validated using data available in the literature. For Al-Si-Cu-Mg alloys further studies regarding the mechanisms involved need to be performed.

Changes in the microstructure during a heat treatment process influence the plastic deformation behaviour. The Hollomon equation describes the plastic deformation of alloys containing shearable precipitates well, while the Ludwigson equation is needed when a supersaturated solid solution is present. When non-coherent precipitates are present, none of the equations describe the plastic deformation well. The evolution of the storage rate and recovery rate of dislocations was studied and coupled to the evolution of the microstructure using the Kocks-Mecking strain hardening theory.

sted, utgiver, år, opplag, sider
Göteborg: Chalmers Reproservice, 2011. s. 45
Serie
Doktorsavhandlingar vid Chalmers tekniska högskola, ISSN 0346-718X ; 3210
Emneord
Cast aluminium alloys, Heat treatment, Solution treatment, Artificial ageing, Tensile properties, Plastic deformation, Microstructure, Modelling
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-15695 (URN)978-91-7385-529-7 (ISBN)
Disputas
2011-05-20, 10:00 (svensk)
Opponent
Veileder
Tilgjengelig fra: 2011-10-11 Laget: 2011-07-13 Sist oppdatert: 2011-12-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Sjölander, EmmaSeifeddine, Salem

Søk i DiVA

Av forfatter/redaktør
Sjölander, EmmaSeifeddine, Salem
Av organisasjonen
I samme tidsskrift
Journal of Materials Processing Technology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 735 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf