Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Satellite Image Change Detection Using Disjoint Information And Local Dissimilarity Map
CReSTIC, EA 3804, University of Reims Champagne-Ardenne, IUT, Troyes, France.
CReSTIC, EA 3804, University of Reims Champagne-Ardenne, IUT, Troyes, France.ORCID-id: 0000-0002-9999-9197
CReSTIC, EA 3804, University of Reims Champagne-Ardenne, IUT, Troyes, France.
CReSTIC, EA 3804, University of Reims Champagne-Ardenne, IUT, Troyes, France.
Vise andre og tillknytning
2022 (engelsk)Inngår i: Proceedings - International Conference on Image Processing, ICIP, IEEE, 2022, s. 36-40Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper presents a new change detection technique for images taken from the sentinel-2 satellite between 2015 and 2018 in different regions of the world. These images are widely used in recent years for change detection. This technique is based on two dissimilarity measures: the Disjoint Information and the Local Dissimilarity Map. The disjoint information quantifies the dissimilarities between textures and the Local Dissimilarity Map those between structures of images. Firstly, the disjoint information is computed across the blocks of the RGB image channels and the value is multiplied by the center value of the pixel of each block. Secondly, the Local Dissimilarity Maps over the pre-processed channels and the average of the pixel values on the Local Dissimilarity Maps are computed. Finally, an extension of the Gaussian OTSU's threshold is used to detect changes in images. Experimental results on the well-known Onera Satellite Change Detection (OSCD) dataset show the effectiveness of our proposed method compared to the state-of-the-art deep learning methods.

sted, utgiver, år, opplag, sider
IEEE, 2022. s. 36-40
Emneord [en]
Change detection, Disjoint Information, Local Dissimilarity Map, Weibull threshold, Deep learning, Learning systems, Pixels, Satellites, Textures, Dissimilarity maps, Dissimilarity measures, Image change detection, RGB images, Satellite images, Weibull
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-60429DOI: 10.1109/ICIP46576.2022.9898062Scopus ID: 2-s2.0-85146640501ISBN: 9781665496209 (digital)OAI: oai:DiVA.org:hj-60429DiVA, id: diva2:1759006
Konferanse
29th IEEE International Conference on Image Processing, ICIP 2022, 16 October 2022 through 19 October 2022
Tilgjengelig fra: 2023-05-24 Laget: 2023-05-24 Sist oppdatert: 2023-05-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Landré, Jérôme

Søk i DiVA

Av forfatter/redaktør
Landré, Jérôme

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 24 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf