Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
More on the Ridge Parameter Estimators for the Gamma Ridge Regression Model: Simulation and Applications
Department of Statistics, University of Sargodha, Sargodha, Pakistan.
Department of Statistics, University of Sargodha, Sargodha, Pakistan.
Jönköping University, Internationella Handelshögskolan, IHH, Statistik.ORCID-id: 0000-0003-0279-5305
Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya.
Vise andre og tillknytning
2022 (engelsk)Inngår i: Mathematical problems in engineering (Print), ISSN 1024-123X, E-ISSN 1563-5147, artikkel-id 6769421Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The Gamma ridge regression estimator (GRRE) is commonly used to solve the problem of multicollinearity, when the response variable follows the gamma distribution. Estimation of the ridge parameter estimator is an important issue in the GRRE as well as for other models. Numerous ridge parameter estimators are proposed for the linear and other regression models. So, in this study, we generalized these estimators for the Gamma ridge regression model. A Monte Carlo simulation study and two real-life applications are carried out to evaluate the performance of the proposed ridge regression estimators and then compared with the maximum likelihood method and some existing ridge regression estimators. Based on the simulation study and real-life applications results, we suggest some better choices of the ridge regression estimators for practitioners by applying the Gamma regression model with correlated explanatory variables. 

sted, utgiver, år, opplag, sider
Hindawi Publishing Corporation, 2022. artikkel-id 6769421
Emneord [en]
Intelligent systems, Maximum likelihood estimation, Monte Carlo methods, Parameter estimation, Model application, Modeling simulation, Monte Carlo's simulation, Multicollinearity, Parameters estimators, Real-life applications, Regression modelling, Ridge regression, Ridge regression estimators, Simulation studies, Regression analysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-56613DOI: 10.1155/2022/6769421ISI: 000797562900004Scopus ID: 2-s2.0-85130315012Lokal ID: GOA;intsam;814145OAI: oai:DiVA.org:hj-56613DiVA, id: diva2:1661730
Tilgjengelig fra: 2022-05-30 Laget: 2022-05-30 Sist oppdatert: 2022-05-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Qasim, Muhammad

Søk i DiVA

Av forfatter/redaktør
Qasim, Muhammad
Av organisasjonen
I samme tidsskrift
Mathematical problems in engineering (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 39 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf