Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Developing a First Order Two Parameter Estimator for Generalized Linear Models
Department of Statistics, Cukurova University, Adana, Turkey.
Department of Statistics, Cukurova University, Adana, Turkey.
Högskolan i Jönköping, Internationella Handelshögskolan, IHH, Statistik.
2019 (engelsk)Inngår i: 11th International statistics Congress ISC2019, Turkish Statistical Association and Giresun University , 2019Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The generalized linear models were defined by Nelder and Wedderburn (1972) and these models allow us to fit regression models for univariate response data which follow a very common exponential family of distribution. The unknown regression coefficients of the generalized linear models are estimated by the maximum likelihood estimator. However, in the existence of multicollinearity, the variance of the maximum likelihood estimator becomes inflated and the statistical inferences based on the maximum likelihood method may not be reliable. In this study, we develop a first order two parameter estimator which combines the advantages of ridge and contraction estimators in the generalized linear models by extending the work of Özkale and Kaçıranlar (2007) in the linear model. The superiority of the first order two parameter estimator to the maximum likelihood, ridge and Liu estimators is investigated with regard to the mean square error criterion. We also examine some optimal estimators of biasing parameters. In addition to the theoretical comparisons, the performance of the estimators is judged by numerical evaluations where the mean square error is considered as a performance criterion.

sted, utgiver, år, opplag, sider
Turkish Statistical Association and Giresun University , 2019.
Emneord [en]
Generalized linear model, two parameter estimator, multicollinearity, first order approximation
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-47706OAI: oai:DiVA.org:hj-47706DiVA, id: diva2:1390803
Konferanse
11th International statistics Congress ISC2019, 4 - 8 October 2019, Bodrum, Mugla, Turkey
Tilgjengelig fra: 2020-02-03 Laget: 2020-02-03 Sist oppdatert: 2020-02-03bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Abstracts & Proceedings Book of ISC2019

Person

Qasim, Muhammad

Søk i DiVA

Av forfatter/redaktør
Qasim, Muhammad
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 165 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf