Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Outlier Detection for Video Session Data Using Sequential Pattern Mining
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
Högskolan i Jönköping, Tekniska Högskolan, JTH, Datateknik och informatik, JTH, Jönköping AI Lab (JAIL). Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-0535-1761
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
Vise andre og tillknytning
2018 (engelsk)Inngår i: ACM SIGKDD Workshop On Outlier Detection De-constructed, 2018Konferansepaper, Oral presentation only (Fagfellevurdert)
Abstract [en]

The growth of Internet video and over-the-top transmission techniqueshas enabled online video service providers to deliver highquality video content to viewers. To maintain and improve thequality of experience, video providers need to detect unexpectedissues that can highly affect the viewers’ experience. This requiresanalyzing massive amounts of video session data in order to findunexpected sequences of events. In this paper we combine sequentialpattern mining and clustering to discover such event sequences.The proposed approach applies sequential pattern mining to findfrequent patterns by considering contextual and collective outliers.In order to distinguish between the normal and abnormal behaviorof the system, we initially identify the most frequent patterns. Thena clustering algorithm is applied on the most frequent patterns.The generated clustering model together with Silhouette Index areused for further analysis of less frequent patterns and detectionof potential outliers. Our results show that the proposed approachcan detect outliers at the system level.

sted, utgiver, år, opplag, sider
2018.
Emneord [en]
Cluster Analysis, Data Stream Mining, Outlier Detection, Sequential Pattern Mining
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-42997OAI: oai:DiVA.org:hj-42997DiVA, id: diva2:1288963
Konferanse
ACM SIGKDD Workshop On Outlier Detection De-constructed, London,
Forskningsfinansiär
Knowledge Foundation, 20140032Tilgjengelig fra: 2019-02-15 Laget: 2019-02-15 Sist oppdatert: 2019-08-20bibliografisk kontrollert

Open Access i DiVA

fulltekst(1030 kB)10 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1030 kBChecksum SHA-512
d9eb8b6ce5e19f5a4ded3f5cb700cf1dd2d97d5cfe09d21459c37d0381a8e7e613e20cf9c7e53720515c4dad2afa073937327b707e70f35fa70b3868961ea866
Type fulltextMimetype application/pdf

Andre lenker

Outlier Detection for Video Session Data Using Sequential Pattern Mining

Personposter BETA

Lavesson, Niklas

Søk i DiVA

Av forfatter/redaktør
Lavesson, Niklas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 10 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 48 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf