Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Minimum Spanning Tree Clustering Approach for Outlier Detection in Event Sequences
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
Högskolan i Jönköping, Tekniska Högskolan, JTH, Datateknik och informatik, JTH, Jönköping AI Lab (JAIL). Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-0535-1761
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
Vise andre og tillknytning
2018 (engelsk)Inngår i: The 17th IEEE International Conference on Machine Learning and Applications Special Session on Machine Learning Algorithms, Systems and Applications, IEEE, 2018Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Outlier detection has been studied in many domains. Outliers arise due to different reasons such as mechanical issues, fraudulent behavior, and human error. In this paper, we propose an unsupervised approach for outlier detection in a sequence dataset. The proposed approach combines sequential pattern mining, cluster analysis, and a minimum spanning tree algorithm in order to identify clusters of outliers. Initially, the sequential pattern mining is used to extract frequent sequential patterns. Next, the extracted patterns are clustered into groups of similar patterns. Finally, the minimum spanning tree algorithm is used to find groups of outliers. The proposed approach has been evaluated on two different real datasets, i.e., smart meter data and video session data. The obtained results have shown that our approach can be applied to narrow down the space of events to a set of potential outliers and facilitate domain experts in further analysis and identification of system level issues.

sted, utgiver, år, opplag, sider
IEEE, 2018.
Emneord [en]
Clustering, Minimum spanning tree, Outlier detection, Sequential pattern mining
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-42988OAI: oai:DiVA.org:hj-42988DiVA, id: diva2:1288956
Konferanse
IEEE International Conference on Machine Learning and Applications, ICMLA, Orlando
Forskningsfinansiär
Knowledge Foundation, 20140032Tilgjengelig fra: 2018-10-09 Laget: 2019-02-15 Sist oppdatert: 2019-08-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Lavesson, Niklas

Søk i DiVA

Av forfatter/redaktør
Lavesson, Niklas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 414 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf