A cut finite element method with boundary value correction for the incompressible Stokes equations
2019 (engelsk)Inngår i: Numerical mathematics and advanced applications ENUMATH 2017, Cham: Springer, 2019, Vol. 126, s. 183-192Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]
We design a cut finite element method for the incompressible Stokes equations on domains with curved boundary. The cut finite element method allows for the domain boundary to cut through the elements of the computational mesh in a very general fashion. To further facilitate the implementation we propose to use a piecewise affine discrete domain even if the physical domain has curved boundary. Dirichlet boundary conditions are imposed using Nitsche’s method on the discrete boundary and the effect of the curved physical boundary is accounted for using the boundary value correction technique introduced for cut finite element methods in Burman et al. (Math Comput 87(310):633–657, 2018).
sted, utgiver, år, opplag, sider
Cham: Springer, 2019. Vol. 126, s. 183-192
Serie
Lecture Notes in Computational Science and Engineering, ISSN 14397358 ; 126
Emneord [en]
Boundary conditions, Navier Stokes equations, Computational mesh, Correction techniques, Curved boundary, Dirichlet boundary condition, Discrete boundaries, Discrete domains, Incompressible Stokes equation, Piecewise affines, Finite element method
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-42799DOI: 10.1007/978-3-319-96415-7_15Scopus ID: 2-s2.0-85060026956ISBN: 9783319964140 (tryckt)ISBN: 9783319964157 (digital)OAI: oai:DiVA.org:hj-42799DiVA, id: diva2:1284685
Konferanse
European Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017, Voss, Norway, 25 - 29 September 2017
2019-02-012019-02-012019-02-15bibliografisk kontrollert