Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A comparison of two estimation methods for common principal components
Jönköping University, Internationella Handelshögskolan, IHH, Statistik.
2019 (engelsk)Inngår i: Communications in statistics. Case studies, data analysis and applications, E-ISSN 2373-7484, Vol. 5, nr 4, s. 366-393Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Common principal components (CPCs) are often estimated using maximum likelihood estimation through an algorithm called the Flury–Gautschi (FG) Algorithm. Krzanowski proposed a simpler estimation method via a principal component analysis of a weighted sum of the sample covariance matrices. These methods are compared for real-world datasets and in a Monte Carlo simulation. The real-world data is used to compare the selection of a common eigenvector model and the estimated coefficients. The simulation study investigates how the accuracy of the methods is affected by autocorrelation, the number of covariance matrices, dimensions, and sample sizes for multivariate normal and chi-square distributed data. The findings in this article support the use of Krzanowski’s method in situations where the CPC assumption is appropriate. 

sted, utgiver, år, opplag, sider
Taylor & Francis, 2019. Vol. 5, nr 4, s. 366-393
Emneord [en]
Common principal components, identification of common eigenvector models, maximum likelihood estimation, Monte Carlo simulation
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-38578DOI: 10.1080/23737484.2019.1656117Scopus ID: 2-s2.0-85080129292Lokal ID: HOA;;1174952OAI: oai:DiVA.org:hj-38578DiVA, id: diva2:1174952
Tilgjengelig fra: 2018-01-17 Laget: 2018-01-17 Sist oppdatert: 2021-02-26bibliografisk kontrollert
Inngår i avhandling
1. Aspects of common principal components
Åpne denne publikasjonen i ny fane eller vindu >>Aspects of common principal components
2017 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The focus of this thesis is the common principal component (CPC) model, the generalization of principal components to several populations. Common principal components refer to a group of multidimensional datasets such that their inner products share the same eigenvectors and are therefore simultaneously diagonalized by a common decorrelator matrix. Common principal component analysis is essentially applied in the same areas and analysis as its one-population counterpart. The generalization to multiple populations comes at the cost of being more mathematically involved, and many problems in the area remains to be solved.

This thesis consists of three individual papers and an introduction chapter.In the first paper, the performance of two different estimation methods of the CPC model is compared for two real-world datasets and in a Monte Carlo simulation study. The second papers show that the orthogonal group and the Haar measure on this group plays an important role in PCA, both in single- and multi-population principal component analysis. The last paper considers using common principal component analysis as a tool for imposing restrictions on system-wise regression models. When the exogenous variables of a multi-dimensional model share common principal components, then each of the marginal models in the system is, up to their eigenvalues, identical. They henceform a class of regression models situated in between the classical seemingly unrelated regressions, where each set of explanatory variables is unique, and multivariate regression, where each marginal model shares the same common set of regressors.

sted, utgiver, år, opplag, sider
Jönköping: Jönköping University, Jönköping International Business School, 2017. s. 80
Serie
JIBS Research Reports, ISSN 1403-0462 ; 2017-2
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-38587 (URN)978-91-86345-79-2 (ISBN)
Veileder
Tilgjengelig fra: 2018-01-17 Laget: 2018-01-17 Sist oppdatert: 2018-01-17bibliografisk kontrollert
2. Applications of common principal components in multivariate and high-dimensional analysis
Åpne denne publikasjonen i ny fane eller vindu >>Applications of common principal components in multivariate and high-dimensional analysis
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis consists of four papers, all exploring some aspect of common principal component analysis (CPCA), the generalization of PCA to multiple groups. The basic assumption of the CPC model is that the space spanned by the eigenvectors is identical across several groups, whereas eigenvalues associated with the eigenvectors can vary. CPCA is used in essentially the same areas and applications as PCA.

The first paper compares the performance of the maximum likelihood and Krzanowski’s estimators of the CPC model for two real-world datasets and in a Monte Carlo simulation study. The simplicity and intuition of Krzanowski's estimator and the findings in this paper support and promote the use of this estimator for CPC models over the maximum likelihood estimator.

Paper number two uses CPCA as a tool for imposing restrictions on system-wise regression models. The paper contributes to the field by proposing a variety of explicit estimators, deriving their properties and identifying the appropriate amount of smoothing that should be imposed on the estimator. 

In the third paper, a generalization of the fixed effects PCA model to multiple populations in a CPC environment is proposed. The model includes mainly geometrical, rather than probabilistic, assumptions, and is designed to account for any possible prior information about the noise in the data to yield better estimates, obtained by minimizing a least squares criterion with respect to a specified metric.

The fourth paper survey some properties of the orthogonal group and the associated Haar measure on it. It is demonstrated how seemingly abstract results contribute to applied statistics and, in particular, to PCA.

Abstract [sv]

Denna avhandling består av fyra papper som alla utforskar någon del av gemensam principalkomponentanalys (CPCA), generaliseringen av principal-komponentanalys (PCA) till flera grupper. Det grundläggande antagandet av CPC-modellen är att egenvektorerna är identiska för samtliga grupper medan de associerade egenvärdena kan variera.

Det första pappret jämför prestationen av maximum likelihood estimatorn och Krzanowskis estimator för CPC-modellen för två verkliga dataset och i en Monte Carlo-simuleringstudie. Enkelheten och intuitionen av Krzanowskis estimator samt resultaten i detta papper stödjer användningen av denna estimator för CPC-modeller över maximum likelihood-estimatorn.

Papper nummer två använder CPCA som ett verktyg för att införa restriktioner på systemvisa regressionsmodeller. Pappret bidrar till området genom att föreslå en rad olika estimatorer, härleda deras egenskaper och identifiera lämplig mängd utjämning som ska åläggas estimatorn.

I det tredje pappret föreslås en generalisering av PCA-modellen med icke-stokastiska effekter till flera populationer i en CPC-miljö. Modellen innehåller huvudsakligen geometriska, snarare än probabilistiska antaganden och är utformad för att betrakta eventuell information om bruset i dataseten för att ge bättre uppskattningar; erhållna genom att minimera ett minsta kvadratkriterium med avseende på ett specificerat metriskt rum.

Det fjärde pappret undersöker egenskaper hos den ortogonala gruppen och det associerade Haar-måttet på gruppen. Det demonstreras hur till synes abstrakta resultat är viktiga för tillämpad statistik och i synnerhet för PCA.

sted, utgiver, år, opplag, sider
Jönköping: Jönköping University, Jönköping International Business School, 2019. s. 56
Serie
JIBS Dissertation Series, ISSN 1403-0470 ; 131
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-43519 (URN)978-91-86345-93-8 (ISBN)
Disputas
2019-05-17, B1014, Jönköping International Business School, Jönköping, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-04-23 Laget: 2019-04-23 Sist oppdatert: 2019-04-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Duras, Toni

Søk i DiVA

Av forfatter/redaktør
Duras, Toni
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 427 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf