Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High-frequency equity index futures trading using recurrent reinforcement learning with candlesticks
Department of Information Technology, University of Borås, Sweden.
Department of Information Technology, University of Borås, Sweden.ORCID-id: 0000-0003-0412-6199
2015 (engelsk)Inngår i: Proceedings - 2015 IEEE Symposium Series on Computational Intelligence, SSCI 2015, IEEE, 2015, s. 734-741Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In 1997, Moody and Wu presented recurrent reinforcement learning (RRL) as a viable machine learning method within algorithmic trading. Subsequent research has shown a degree of controversy with regards to the benefits of incorporating technical indicators in the recurrent reinforcement learning framework. In 1991, Nison introduced Japanese candlesticks to the global research community as an alternative to employing traditional indicators within the technical analysis of financial time series. The literature accumulated over the past two and a half decades of research contains conflicting results with regards to the utility of using Japanese candlestick patterns to exploit inefficiencies in financial time series. In this paper, we combine features based on Japanese candlesticks with recurrent reinforcement learning to produce a high-frequency algorithmic trading system for the E-mini S&P 500 index futures market. Our empirical study shows a statistically significant increase in both return and Sharpe ratio compared to relevant benchmarks, suggesting the existence of exploitable spatio-Temporal structure in Japanese candlestick patterns and the ability of recurrent reinforcement learning to detect and take advantage of this structure in a high-frequency equity index futures trading environment.

sted, utgiver, år, opplag, sider
IEEE, 2015. s. 734-741
Emneord [en]
Artificial intelligence, Commerce, Financial data processing, Financial markets, Learning systems, Reinforcement learning, Time series, Time series analysis, Algorithmic trading, Algorithmic trading system, Financial time series, Japanese candlesticks, Machine learning methods, Recurrent reinforcement learning, Research communities, Spatio-temporal structures, Electronic trading
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-38117DOI: 10.1109/SSCI.2015.111Scopus ID: 2-s2.0-84964931411ISBN: 9781479975600 (tryckt)OAI: oai:DiVA.org:hj-38117DiVA, id: diva2:1163922
Konferanse
IEEE Symposium Series on Computational Intelligence, SSCI 2015, 8 December 2015 through 10 December 2015
Tilgjengelig fra: 2017-12-08 Laget: 2017-12-08 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Johansson, Ulf

Søk i DiVA

Av forfatter/redaktør
Johansson, Ulf

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 192 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf