Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Tree-Based Response Surface Analysis
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-3311-2530
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-0535-1761
Engineering Method Development, GKN Aerospace Engine Systems Sweden.
Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik.
2015 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Computer-simulated experiments have become a cost effective way for engineers to replace real experiments in the area of product development. However, one single computer-simulated experiment can still take a significant amount of time. Hence, in order to minimize the amount of simulations needed to investigate a certain design space, different approaches within the design of experiments area are used. One of the used approaches is to minimize the time consumption and simulations for design space exploration through response surface modeling. The traditional methods used for this purpose are linear regression, quadratic curve fitting and support vector machines. This paper analyses and compares the performance of four machine learning methods for the regression problem of response surface modeling. The four methods are linear regression, support vector machines, M5P and random forests. Experiments are conducted to compare the performance of tree models (M5P and random forests) with the performance of non-tree models (support vector machines and linear regression) on data that is typical for concept evaluation within the aerospace industry. The main finding is that comprehensible models (the tree models) perform at least as well as or better than traditional black-box models (the non-tree models). The first observation of this study is that engineers understand the functional behavior, and the relationship between inputs and outputs, for the concept selection tasks by using comprehensible models. The second observation is that engineers can also increase their knowledge about design concepts, and they can reduce the time for planning and conducting future experiments.

sted, utgiver, år, opplag, sider
Springer , 2015. s. 118-129
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 9432
Emneord [en]
Machine learning, Regression, Surrogate model, Response surface model
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-37922DOI: 10.1007/978-3-319-27926-8_11ISBN: 978-3-319-27925-1 (tryckt)OAI: oai:DiVA.org:hj-37922DiVA, id: diva2:1160099
Konferanse
The International Workshop on Machine learning, Optimization and big Data (MOD 2015), Taormina - Sicily, Italy
Forskningsfinansiär
Knowledge FoundationTilgjengelig fra: 2017-11-24 Laget: 2017-11-24 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

fulltext(860 kB)62 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 860 kBChecksum SHA-512
30a7ebc443fead40ab20ffdc33fdb96f24dc69f70573a36de77fd1d55a8567560f361bb24ab5af686ac04f6fcdc296884750fb010055a9734404d9df906179dd
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Lavesson, Niklas

Søk i DiVA

Av forfatter/redaktør
Dasari, Siva KrishnaLavesson, Niklas

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 62 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 72 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf