RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting with Confidence from Survival Data
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden.
Högskolan i Jönköping, Tekniska Högskolan, JTH, Datateknik och informatik, JTH, Jönköping AI Lab (JAIL).ORCID-id: 0000-0003-0412-6199
Scania CV AB, Sweden.
2019 (engelsk)Inngår i: Conformal and Probabilistic Prediction and Applications / [ed] Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, Evgueni Smirnov, 2019, s. 123-141Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Survival modeling concerns predicting whether or not an event will occur before or on a given point in time. In a recent study, the conformal prediction framework was applied to this task, and so-called conformal random survival forest was proposed. It was empirically shown that the error level of this model indeed is very close to the provided confidence level, and also that the error for predicting each outcome, i.e., event or no-event, can be controlled separately by employing a Mondrian approach. The addressed task concerned making predictions for time points as provided by the underlying distribution. However, if one instead is interested in making predictions with respect to some specific time point, the guarantee of the conformal prediction framework no longer holds, as one is effectively considering a sample from another distribution than from which the calibration instances have been drawn. In this study, we propose a modification of the approach for specific time points, which transforms the problem into a binary classification task, thereby allowing the error level to be controlled. The latter is demonstrated by an empirical investigation using both a collection of publicly available datasets and two in-house datasets from a truck manufacturing company.

sted, utgiver, år, opplag, sider
2019. s. 123-141
Serie
Proceedings of Machine Learning Research, ISSN 2640-3498 ; 105
Emneord [en]
Conformal prediction, survival modeling, random forests.
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-46802OAI: oai:DiVA.org:hj-46802DiVA, id: diva2:1369228
Konferanse
Proceedings of the Eighth Symposium on Conformal and Probabilistic Prediction and Applications, 9-11 September 2019, Golden Sands, Bulgaria
Tilgjengelig fra: 2019-11-11 Laget: 2019-11-11 Sist oppdatert: 2019-11-11bibliografisk kontrollert

Open Access i DiVA

fulltext(673 kB)11 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 673 kBChecksum SHA-512
2116a5139ef439d3d3a470ef218a76dddf1dae7a943718d148123d4d67d7daf0dc66145ca4c77988ab4855e643608cda419892d1896826fbec564b9ea052a92d
Type fulltextMimetype application/pdf

Personposter BETA

Johansson, Ulf

Søk i DiVA

Av forfatter/redaktør
Johansson, Ulf
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 11 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 90 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf