RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Locally Induced Predictive Models
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0412-6199
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0274-9026
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
2011 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Most predictive modeling techniques utilize all available data to build global models. This is despite the wellknown fact that for many problems, the targeted relationship varies greatly over the input space, thus suggesting that localized models may improve predictive performance. In this paper, we suggest and evaluate a technique inducing one predictive model for each test instance, using only neighboring instances. In the experimentation, several different variations of the suggested algorithm producing localized decision trees and neural network models are evaluated on 30 UCI data sets. The main result is that the suggested approach generally yields better predictive performance than global models built using all available training data. As a matter of fact, all techniques producing J48 trees obtained significantly higher accuracy and AUC, compared to the global J48 model. For RBF network models, with their inherent ability to use localized information, the suggested approach was only successful with regard to accuracy, while global RBF models had a better ranking ability, as seen by their generally higher AUCs.

sted, utgiver, år, opplag, sider
IEEE, 2011.
Emneord [en]
local learning, predictive modeling, decision trees, rbf networks, Machine Learning
Emneord [sv]
Data Mining
HSV kategori
Forskningsprogram
Handel och IT
Identifikatorer
URN: urn:nbn:se:hj:diva-45799DOI: 10.1109/ICSMC.2011.6083922Lokal ID: 0;0;miljJAILISBN: 978-1-4577-0651-6 (tryckt)OAI: oai:DiVA.org:hj-45799DiVA, id: diva2:1348947
Konferanse
IEEE International Conference on Systems, Man, and Cybernetics
Tilgjengelig fra: 2019-09-06 Laget: 2019-09-06 Sist oppdatert: 2019-09-06bibliografisk kontrollert

Open Access i DiVA

fulltext(327 kB)34 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 327 kBChecksum SHA-512
5148002a32c075eb7c1a558cf7f872fade6930018e2b91fcca1e0816d65a833826f98960a27f42611e197cfd16c93301d146087bccc6d930069777c3593ced9b
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Johansson, UlfLöfström, TuveSönströd, Cecilia

Søk i DiVA

Av forfatter/redaktør
Johansson, UlfLöfström, TuveSönströd, Cecilia

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 34 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 73 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf