RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Feature Selection with Bagging and Rule Extraction in Drug Discovery
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0412-6199
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
Vise andre og tillknytning
2010 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper investigates different ways of combining feature selection with bagging and rule extraction in predictive modeling. Experiments on a large number of data sets from the medicinal chemistry domain, using standard algorithms implemented in theWeka data mining workbench, show that feature selection can lead to significantly improved predictive performance.When combining feature selection with bagging, employing the feature selection on each bootstrap obtains the best result.When using decision trees for rule extraction, the effect of feature selection can actually be detrimental, unless the transductive approach oracle coaching is also used. However, employing oracle coaching will lead to significantly improved performance, and the best results are obtainedwhen performing feature selection before training the opaque model. The overall conclusion is that it can make a substantial difference for the predictive performance exactly how feature selection is used in conjunction with other techniques.

sted, utgiver, år, opplag, sider
Springer, 2010.
Serie
Smart Innovation, Systems and Technologies ; 4
Emneord [en]
feature selection, bagging, rule extraction, Machine learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-45804Lokal ID: 0;0;miljJAILISBN: 978-3-642-14615-2 (tryckt)OAI: oai:DiVA.org:hj-45804DiVA, id: diva2:1348941
Konferanse
Advances in Intelligent Decision Technologies, Second KES International Symposium IDT 2010
Merknad

Sponsorship:

This work was supported by the INFUSIS project (www.his.se/infusis) at the University of Skövde, Sweden, in partnership with the Swedish Knowledge Foundation under grant 2008/0502.

Tilgjengelig fra: 2019-09-06 Laget: 2019-09-06 Sist oppdatert: 2019-09-06bibliografisk kontrollert

Open Access i DiVA

fulltext(235 kB)23 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 235 kBChecksum SHA-512
b52e313266218047d0d9c34938d3b2757896970bc1e7f0fefe243ede38a18ab31683311cf80f2538c8f87d9fb628c16b1dcc3f5adac99339108889f0ae516820
Type fulltextMimetype application/pdf

Personposter BETA

Johansson, UlfSönströd, CeciliaLöfström, Tuve

Søk i DiVA

Av forfatter/redaktør
Johansson, UlfSönströd, CeciliaLöfström, Tuve

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 23 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 58 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf