RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluating Algorithms for Concept Description
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0412-6199
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0274-9026
2009 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

When performing concept description, models need to be evaluated both on accuracy and comprehensibility. A comprehensible concept description model should present the most important relationships in the data in an accurate and understandable way. Two natural representations for this are decision trees and decision lists. In this study, the two decision list algorithms RIPPER and Chipper, and the decision tree algorithm C4.5, are evaluated for concept description, using publicly available datasets. The experiments show that C4.5 performs very well regarding accuracy and brevity, i.e. the ability to classify instances with few tests, but also produces large models that are hard to survey and contain many extremely specific rules, thus not being good concept descriptions. The decision list algorithms perform reasonably well on accuracy, and are mostly able to produce small models with relatively good predictive performance. Regarding brevity, Chipper is better than RIPPER, using on average fewer conditions to classify an instance. RIPPER, on the other hand, excels in relevance, i.e. the ability to capture a large number of instances with every rule.

sted, utgiver, år, opplag, sider
CSREA , 2009.
Emneord [en]
concept description, rule induction, decision lists, Machine Learning
Emneord [sv]
data mining
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-45806Lokal ID: 0;0;miljJAILOAI: oai:DiVA.org:hj-45806DiVA, id: diva2:1348939
Konferanse
5th International Conference on Data Mining - DMIN 09, Las Vegas, USA
Tilgjengelig fra: 2019-09-06 Laget: 2019-09-06 Sist oppdatert: 2019-09-06bibliografisk kontrollert

Open Access i DiVA

fulltext(215 kB)4 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 215 kBChecksum SHA-512
7b31f477db4fd8f4fb73429bc334daab9426e9f3f5d07d28fd813bc35aff6cd3fdf253ce807734a676b5762da1ffc1c18146844e4e9a72e23aa7c16eafb83ef4
Type fulltextMimetype application/pdf

Personposter BETA

Sönströd, CeciliaJohansson, UlfLöfström, Tuve

Søk i DiVA

Av forfatter/redaktør
Sönströd, CeciliaJohansson, UlfLöfström, Tuve

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 4 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 40 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf