Endre søk
Link to record
Permanent link

Direct link
Publikasjoner (10 av 154) Visa alla publikasjoner
Frachon, T., Hansbo, P., Nilsson, E. & Zahedi, S. (2024). A Divergence Preserving Cut Finite Element Method For Darcy Flow. SIAM Journal on Scientific Computing, 46(3), A1793-A1820
Åpne denne publikasjonen i ny fane eller vindu >>A Divergence Preserving Cut Finite Element Method For Darcy Flow
2024 (engelsk)Inngår i: SIAM Journal on Scientific Computing, ISSN 1064-8275, E-ISSN 1095-7197, Vol. 46, nr 3, s. A1793-A1820Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We study cut finite element discretizations of a Darcy interface problem based on the mixed finite element pairs RTk \times Qk, k \geq 0. Here Qk is the space of discontinuous polynomial functions of degree less than or equal to k and RT is the Raviart-Thomas space. We show that the standard ghost penalty stabilization, often added in the weak forms of cut finite element methods for stability and control of the condition number of the resulting linear system matrix, destroys the divergence-free property of the considered element pairs. Therefore, we propose new stabilization terms for the pressure and show that we recover the optimal approximation of the divergence without losing control of the condition number of the linear system matrix. We prove that with the new stabilization term the proposed cut finite element discretization results in pointwise divergence-free approximations of solenoidal velocity fields. We derive a priori error estimates for the proposed unfitted finite element discretization based on RTk \times Qk, k \geq 0. In addition, by decomposing the computational mesh into macroelements and applying ghost penalty terms only on interior edges of macroelements, stabilization is applied very restrictively and active only where needed. Numerical experiments with element pairs RT0 \times Q0, RT1 \times Q1, and BDM1 \times Q0 (where BDM is the Brezzi-Douglas-Marini space) indicate that with the new method we have (1) optimal rates of convergence of the approximate velocity and pressure; (2) well-posed linear systems where the condition number of the system matrix scales as it does for fitted finite element discretizations; (3) optimal rates of convergence of the approximate divergence with pointwise divergence-free approximations of solenoidal velocity fields. All three properties hold independently of how the interface is positioned relative to the computational mesh.

sted, utgiver, år, opplag, sider
Society for Industrial and Applied Mathematics Publications, 2024
Emneord
cut elements, Darcy's law, interface problem, mass conservation, mixed finite element methods, unfitted, Convergence of numerical methods, Finite element method, Flow of fluids, Linear systems, Matrix algebra, Mesh generation, Number theory, Solenoids, Condition numbers, Cut element, Darcy law, Divergence free, Finite-element discretization, Interface problems, System matrix, Stabilization
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-64584 (URN)10.1137/22M149702X (DOI)001293445800005 ()2-s2.0-85194357178 (Scopus ID)POA;;954509 (Lokal ID)POA;;954509 (Arkivnummer)POA;;954509 (OAI)
Forskningsfinansiär
Swedish Research Council, 2018-04192, 2022-04808, 2022-03908Knut and Alice Wallenberg Foundation, KAW 2019.0190
Tilgjengelig fra: 2024-06-03 Laget: 2024-06-03 Sist oppdatert: 2025-01-31bibliografisk kontrollert
Burman, E., Hansbo, P. & Larson, M. (2024). Cut finite element method for divergence-free approximation of incompressible flow: A Lagrange multiplier approach. SIAM Journal on Numerical Analysis, 62(2), 893-918
Åpne denne publikasjonen i ny fane eller vindu >>Cut finite element method for divergence-free approximation of incompressible flow: A Lagrange multiplier approach
2024 (engelsk)Inngår i: SIAM Journal on Numerical Analysis, ISSN 0036-1429, E-ISSN 1095-7170, Vol. 62, nr 2, s. 893-918Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this note, we design a cut finite element method for a low order divergence-free element applied to a boundary value problem subject to Stokes' equations. For the imposition of Dirichlet boundary conditions, we consider either Nitsche's method or a stabilized Lagrange multiplier method. In both cases, the normal component of the velocity is constrained using a multiplier, different from the standard pressure approximation. The divergence of the approximate velocities is pointwise zero over the whole mesh domain, and we derive optimal error estimates for the velocity and pressures, where the error constant is independent of how the physical domain intersects the computational mesh, and of the regularity of the pressure multiplier imposing the divergence-free condition.

sted, utgiver, år, opplag, sider
Society for Industrial and Applied Mathematics, 2024
Emneord
compatible finite elements, CutFEM, fictitious domain, incompressibility, Lagrange multipliers, Stokes' equations, Boundary conditions, Boundary value problems, Finite element method, Incompressible flow, Mesh generation, Boundary-value problem, Compatible finite element, Divergence free, Divergence-free elements, Fictitious domains, Lagrange multiplier approach, Low order, Stokes equations
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-64136 (URN)10.1137/22M1542933 (DOI)001197029500001 ()2-s2.0-85191583237 (Scopus ID);intsam;949929 (Lokal ID);intsam;949929 (Arkivnummer);intsam;949929 (OAI)
Forskningsfinansiär
Swedish Research Council, 2017-03911, 2018-05262, 2021-04925, 2022-03908
Tilgjengelig fra: 2024-05-07 Laget: 2024-05-07 Sist oppdatert: 2025-01-31bibliografisk kontrollert
Burman, E., Hansbo, P. & Larson, M. G. (2024). Low regularity estimates for CutFEM approximations of an elliptic problem with mixed boundary conditions. Mathematics of Computation, 93(345), 35-54
Åpne denne publikasjonen i ny fane eller vindu >>Low regularity estimates for CutFEM approximations of an elliptic problem with mixed boundary conditions
2024 (engelsk)Inngår i: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 93, nr 345, s. 35-54Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We show error estimates for a cut finite element approximation of a second order elliptic problem with mixed boundary conditions. The error estimates are of low regularity type where we consider the case when the exact solution u & ISIN; Hs with s & ISIN; (1, 3/2]. For Nitsche type methods this case requires special handling of the terms involving the normal flux of the exact solution at the the boundary. For Dirichlet boundary conditions the estimates are optimal, whereas in the case of mixed Dirichlet-Neumann boundary conditions they are suboptimal by a logarithmic factor.

sted, utgiver, år, opplag, sider
American Mathematical Society (AMS), 2024
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-62377 (URN)10.1090/mcom/3875 (DOI)001047664700001 ()2-s2.0-85174930720 (Scopus ID);intsam;901188 (Lokal ID);intsam;901188 (Arkivnummer);intsam;901188 (OAI)
Forskningsfinansiär
Swedish Research Council, 2017-03911, 2018-05262, 2021-04925
Tilgjengelig fra: 2023-09-04 Laget: 2023-09-04 Sist oppdatert: 2023-11-06bibliografisk kontrollert
Burman, E., Hansbo, P., Larson, M. G. & Larsson, K. (2023). Extension operators for trimmed spline spaces. Computer Methods in Applied Mechanics and Engineering, 403, Article ID 115707.
Åpne denne publikasjonen i ny fane eller vindu >>Extension operators for trimmed spline spaces
2023 (engelsk)Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 403, artikkel-id 115707Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We develop a discrete extension operator for trimmed spline spaces consisting of piecewise polynomial functions of degree p with k continuous derivatives. The construction is based on polynomial extension from neighboring elements together with projection back into the spline space. We prove stability and approximation results for the extension operator. Finally, we illustrate how we can use the extension operator to construct a stable cut isogeometric method for an elliptic model problem.

sted, utgiver, år, opplag, sider
Elsevier, 2023
Emneord
Splines, A-stable, Approximation results, Cut isogeometric method, Discrete extension operator, Extension operators, Piecewise polynomial functions, Spline space, Stability results, Trimmed spline space, Unfitted finite element method, Finite element method, Cut isogeometric methods, Discrete extension operators, Trimmed spline spaces, Unfitted finite element methods
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-58827 (URN)10.1016/j.cma.2022.115707 (DOI)000882526600004 ()2-s2.0-85140922298 (Scopus ID)HOA;intsam;840864 (Lokal ID)HOA;intsam;840864 (Arkivnummer)HOA;intsam;840864 (OAI)
Forskningsfinansiär
eSSENCE - An eScience CollaborationSwedish Research Council, 2017-03911, 2018-05262, 2021-04925
Tilgjengelig fra: 2022-11-08 Laget: 2022-11-08 Sist oppdatert: 2022-12-02bibliografisk kontrollert
Burman, E., Hansbo, P., Larson, M. G. & Larsson, K. (2023). Isogeometric analysis and Augmented Lagrangian Galerkin Least Squares Methods for residual minimization in dual norm. Computer Methods in Applied Mechanics and Engineering, 417(Part B), Article ID 116302.
Åpne denne publikasjonen i ny fane eller vindu >>Isogeometric analysis and Augmented Lagrangian Galerkin Least Squares Methods for residual minimization in dual norm
2023 (engelsk)Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 417, nr Part B, artikkel-id 116302Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We explore how recent advances in Isogeometric analysis, Galerkin Least-Squares methods, and Augmented Lagrangian techniques can be applied to solve nonstandard problems, for which there is no classical stability theory, such as that provided by the Lax–Milgram lemma or the Banach-Necas-Babuska theorem. In particular, we consider continuation problems where a second-order partial differential equation with incomplete boundary data is solved given measurements of the solution on a subdomain of the computational domain. The use of higher regularity spline spaces leads to simplified formulations and potentially minimal multiplier space. We show that our formulation is inf-sup stable, and given appropriate a priori assumptions, we establish optimal order convergence.

sted, utgiver, år, opplag, sider
Elsevier, 2023
Emneord
Dual norm residual minimization, Error estimates, Finite element method, Galerkin Least Squares, Isogeometric analysis, Computation theory, Constrained optimization, Galerkin methods, Lagrange multipliers, Least squares approximations, Augmented Lagrangians, Lagrangian techniques, Least-squares- methods, Nonstandard problems, Residual minimization, Stability theories
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-62510 (URN)10.1016/j.cma.2023.116302 (DOI)001114119400001 ()2-s2.0-85169927833 (Scopus ID);intsam;62510 (Lokal ID);intsam;62510 (Arkivnummer);intsam;62510 (OAI)
Forskningsfinansiär
Swedish Research Council, 2021-04925, 2022-03908eSSENCE - An eScience Collaboration, EP/T033126/1, EP/V050400/1
Tilgjengelig fra: 2023-09-20 Laget: 2023-09-20 Sist oppdatert: 2024-01-09bibliografisk kontrollert
Burman, E., Hansbo, P. & Larson, M. G. (2023). The Augmented Lagrangian Method as a Framework for Stabilised Methods in Computational Mechanics. Archives of Computational Methods in Engineering, 30, 2579-2604
Åpne denne publikasjonen i ny fane eller vindu >>The Augmented Lagrangian Method as a Framework for Stabilised Methods in Computational Mechanics
2023 (engelsk)Inngår i: Archives of Computational Methods in Engineering, ISSN 1134-3060, E-ISSN 1886-1784, Vol. 30, s. 2579-2604Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper we will present a review of recent advances in the application of the augmented Lagrange multiplier method as a general approach for generating multiplier-free stabilised methods. The augmented Lagrangian method consists of a standard Lagrange multiplier method augmented by a penalty term, penalising the constraint equations, and is well known as the basis for iterative algorithms for constrained optimisation problems. Its use as a stabilisation methods in computational mechanics has, however, only recently been appreciated. We first show how the method generates Galerkin/Least Squares type schemes for equality constraints and then how it can be extended to develop new stabilised methods for inequality constraints. Application to several different problems in computational mechanics is given.

sted, utgiver, år, opplag, sider
Springer, 2023
Emneord
Constrained optimization, Iterative methods, Lagrange multipliers, Augmented lagrange multiplier methods, Augmented Lagrangian methods, Constrained optimi-zation problems, Constraint equation, Galerkin Least Squares, Iterative algorithm, Lagrange multiplier method, Penalty term, Stabilization methods, Stabilized method, Computational mechanics
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-59759 (URN)10.1007/s11831-022-09878-6 (DOI)000920400800001 ()2-s2.0-85146572606 (Scopus ID)HOA;intsam;860720 (Lokal ID)HOA;intsam;860720 (Arkivnummer)HOA;intsam;860720 (OAI)
Forskningsfinansiär
eSSENCE - An eScience CollaborationSwedish Research Council, 2017-03911, 2018-05262, 2021-04925
Tilgjengelig fra: 2023-02-08 Laget: 2023-02-08 Sist oppdatert: 2023-06-30bibliografisk kontrollert
Hansbo, P. & Larson, M. G. (2022). A simple nonconforming tetrahedral element for the Stokes equations. Computer Methods in Applied Mechanics and Engineering, 400, Article ID 115549.
Åpne denne publikasjonen i ny fane eller vindu >>A simple nonconforming tetrahedral element for the Stokes equations
2022 (engelsk)Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 400, artikkel-id 115549Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper we apply a nonconforming rotated bilinear tetrahedral element to the Stokes problem in R3. We show that the element is stable in combination with a piecewise linear, continuous, approximation of the pressure. This gives an approximation similar to the well known continuous P2–P1 Taylor–Hood element, but with fewer degrees of freedom. The element is a stable non-conforming low order element which fulfils Korn's inequality, leading to stability also in the case where the Stokes equations are written on stress form for use in the case of free surface flow.

sted, utgiver, år, opplag, sider
Elsevier, 2022
Emneord
Degrees of freedom (mechanics), Navier Stokes equations, Piecewise linear techniques, A-stable, Continous approximation, Lower order elements, Nonconforming element, Piecewise linear, Piecewise-linear, Simple++, Stokes equations, Stokes problem, Tetrahedral elements, Finite element method
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-58576 (URN)10.1016/j.cma.2022.115549 (DOI)000862959800004 ()2-s2.0-85138441667 (Scopus ID)HOA;;835275 (Lokal ID)HOA;;835275 (Arkivnummer)HOA;;835275 (OAI)
Forskningsfinansiär
Swedish Research Council, 2017-03911, 2018-05262, 2021-04925eSSENCE - An eScience Collaboration
Tilgjengelig fra: 2022-10-03 Laget: 2022-10-03 Sist oppdatert: 2022-10-21bibliografisk kontrollert
Hansbo, P. & Larson, M. G. (2022). Augmented Lagrangian approach to deriving discontinuous Galerkin methods for nonlinear elasticity problems. International Journal for Numerical Methods in Engineering, 123(18), 4407-4421
Åpne denne publikasjonen i ny fane eller vindu >>Augmented Lagrangian approach to deriving discontinuous Galerkin methods for nonlinear elasticity problems
2022 (engelsk)Inngår i: International Journal for Numerical Methods in Engineering, ISSN 0029-5981, E-ISSN 1097-0207, Vol. 123, nr 18, s. 4407-4421Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We use the augmented Lagrangian formalism to derive discontinuous Galerkin (DG) formulations for problems in nonlinear elasticity. In elasticity, stress is typically a symmetric function of strain, leading to symmetric tangent stiffness matrices in Newton's method when conforming finite elements are used for discretization. By use of the augmented Lagrangian framework, we can also obtain symmetric tangent stiffness matrices in DG methods. We suggest two different approaches and give examples from plasticity and from large deformation hyperelasticity.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2022
Emneord
antiplane shear plasticity, augmented Lagrangian, discontinuous Galerkin, finite elasticity, Nitsche's method
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-57046 (URN)10.1002/nme.7039 (DOI)000799985600001 ()HOA;;816646 (Lokal ID)HOA;;816646 (Arkivnummer)HOA;;816646 (OAI)
Forskningsfinansiär
Swedish Research Council, 2017-03911, 2018-05262, 2021-04925
Tilgjengelig fra: 2022-06-10 Laget: 2022-06-10 Sist oppdatert: 2022-09-16bibliografisk kontrollert
Burman, E., Hansbo, P. & Larson, M. G. (2022). CutFEM based on extended finite element spaces. Numerische Mathematik, 152, 331-369
Åpne denne publikasjonen i ny fane eller vindu >>CutFEM based on extended finite element spaces
2022 (engelsk)Inngår i: Numerische Mathematik, ISSN 0029-599X, E-ISSN 0945-3245, Vol. 152, s. 331-369Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We develop a general framework for construction and analysis of discrete extension operators with application to unfitted finite element approximation of partial differential equations. In unfitted methods so called cut elements intersected by the boundary occur and these elements must in general by stabilized in some way. Discrete extension operators provides such a stabilization by modification of the finite element space close to the boundary. More, precisely the finite element space is extended from the stable interior elements over the boundary in a stable way which also guarantees optimal approximation properties. Our framework is applicable to all standard nodal based finite elements of various order and regularity. We develop an abstract theory for elliptic problems and associated parabolic time dependent partial differential equations and derive a priori error estimates. We finally apply this to some examples of partial differential equations of different order including the interface problems, the biharmonic operator and the sixth order triharmonic operator.

sted, utgiver, år, opplag, sider
Springer, 2022
Emneord
65N30, 65N85
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-58559 (URN)10.1007/s00211-022-01313-z (DOI)000855517700001 ()2-s2.0-85138104101 (Scopus ID)HOA;intsam;834901 (Lokal ID)HOA;intsam;834901 (Arkivnummer)HOA;intsam;834901 (OAI)
Tilgjengelig fra: 2022-09-29 Laget: 2022-09-29 Sist oppdatert: 2022-12-09bibliografisk kontrollert
Burman, E., Hansbo, P. & Larson, M. G. (2022). Error Estimates for the Smagorinsky Turbulence Model: Enhanced Stability Through Scale Separation and Numerical Stabilization. Journal of Mathematical Fluid Mechanics, 24(1), Article ID 5.
Åpne denne publikasjonen i ny fane eller vindu >>Error Estimates for the Smagorinsky Turbulence Model: Enhanced Stability Through Scale Separation and Numerical Stabilization
2022 (engelsk)Inngår i: Journal of Mathematical Fluid Mechanics, ISSN 1422-6928, E-ISSN 1422-6952, Vol. 24, nr 1, artikkel-id 5Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the present work we show some results on the effect of the Smagorinsky model on the stability of the associated perturbation equation. We show that in the presence of a spectral gap, such that the flow can be decomposed in a large scale with moderate gradient and a small amplitude fine scale with arbitratry gradient, the Smagorinsky model admits stability estimates for perturbations, with exponential growth depending only on the large scale gradient. We then show in the context of stabilized finite element methods that the same result carries over to the approximation and that in this context, for suitably chosen finite element spaces the Smagorinsky model acts as a stabilizer yielding close to optimal error estimates in the L-2-norm for smooth flows in the pre-asymptotic high Reynolds number regime.

sted, utgiver, år, opplag, sider
Springer, 2022
Emneord
Navier-Stokes' equations, Trubulence modelling, LES, Smagorinsky model, Stabilized finite element
HSV kategori
Identifikatorer
urn:nbn:se:hj:diva-55150 (URN)10.1007/s00021-021-00633-8 (DOI)000718277700001 ()2-s2.0-85119322075 (Scopus ID)HOA;intsam;778862 (Lokal ID)HOA;intsam;778862 (Arkivnummer)HOA;intsam;778862 (OAI)
Forskningsfinansiär
Swedish Research Council, 2018-05262European Commission, 2017-03911
Tilgjengelig fra: 2021-11-25 Laget: 2021-11-25 Sist oppdatert: 2021-11-29bibliografisk kontrollert
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-7352-1550