

Exploring the Role of

Linux in Accelerating

Time-to-Market for

Embedded Systems

PAPER WITHIN: Computer Science, Embedded Systems

AUTHORS: Jesper Persson, Josua Alexandersson

TUTOR: Jérõme Landré

JÖNKÖPING May 2023

A Mixed Methods Approach

This exam work has been carried out at the School of Engineering in Jönköping in the

embedded systems program. The work is a part of the three-year Bachelor of Science

in computer engineering. The authors take full responsibility for opinions, conclusions

and findings presented.

Examiner: Ragnar Nohre

Supervisor: Jérôme Landré

Scope: 15 credits

Date: 2023-05-31

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

1

1 Abstract

How can Linux reduce the time required for development in embedded systems, and

what makes Linux appealing to embedded developers despite the loss in overall

control? Through qualitative interviews with industry professionals and a systematic

literature review, challenges and benefits of using Linux in embedded systems

development were identified and discussed. Three hypotheses were formulated based

on recurring topic agreement among the interview subjects: Reduced development time

through the use of open-source solutions, struggles with real-time and security

requirements, and challenges within troubleshooting and dependency management. The

empirical data observed primarily aligned with the professional perception indicating

the potential for development time reduction leveraging resources properly. However

also highlighting additional challenges that are not present in traditional embedded

system development. Several trade-offs were observed from the findings, including

increased overhead and licensing concerns. Further research is required to fully

understand the advantages, challenges and limits associated with Linux in an embedded

system environment. This study provides valuable insights for future exploration within

the field.

Keywords

Embedded System, Linux Operating System, Real-time Operating System, Software

Development, Development Time Reduction

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

2

2 Contents

1 Abstract ... 1

2 Contents .. 2

3 Summary ... 4

4 Introduction .. 5

4.1 BACKGROUND .. 5

4.2 PURPOSE AND RESEARCH QUESTIONS ... 5

4.3 SCOPE ... 6

4.4 DELIMITATIONS .. 6

4.5 REPORT DISPOSITION ... 7

5 Theoretical background .. 8

5.1 GROUNDED THEORY .. 8

5.2 QUALITATIVE INTERVIEWS ... 9

5.3 SYSTEMATIC LITERATURE REVIEW .. 9

6 Method and implementation ... 10

6.1 THE MIXED METHODS APPROACH ... 10

6.2 PRELIMINARY INTERVIEWS AND HYPOTHESIS GENERATION 10

6.3 MEMBER CHECKING PROCESS .. 11

7 Findings and analysis ... 12

7.1 INTERVIEW FINDINGS ... 12

7.2 HYPOTHESIS GENERATION ... 15

7.3 SYSTEMATIC LITERATURE ANALYSIS OF HYPOTHESES 16

7.3.1 Development Time and Access to Open-Source Software 16

7.3.2 Real-Time Requirements and Safety ... 17

7.3.3 Troubleshooting and Debugging in Linux ... 18

8 Discussion and Further Research ... 20

8.1 COMPARISON BETWEEN INTERVIEW FINDINGS AND LITERATURE 20

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

3

8.1.1 Libraries ... 20

8.1.2 Real-Time Requirements ... 21

8.1.3 Troubleshooting and Debugging .. 21

8.2 IMPLICATIONS FOR FUTURE RESEARCH .. 22

8.2.1 Libraries and Open-Source Software ... 22

8.2.2 Real-Time Requirements ... 23

8.2.3 Troubleshooting and Debugging .. 24

9 Conclusions ... 25

10 References .. 26

11 Appendices ... 28

11.1 INTERVIEW GUIDELINE ... 28

11.2 SYSTEMATIC LITERATURE REVIEW SEARCH STRATEGIES 30

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

4

3 Summary

This thesis is organized into five main sections to provide a comprehensive

understanding on the research conducted

The introduction chapter presents the reader with the scope, purpose and background

of the study, as well as its research questions. It also contains an overview of the

disposition, detailing subsequent chapters.

The theoretical background chapter explores relevant existing literature and theory that

laid the foundation to the research questions and study design. It discusses the grounded

theory approach and its suitability to explore processes and complex aspects.

Additionally, the use of qualitative interviews is highlighted as its open-ended and

explorative nature naturally aligns with grounded theory. Finally, this chapter

introduces the use of a systematic literature review and its role of examining the extent

to which empirical evidence can support or contradict the hypotheses that were

extracted from the interviews.

The method and implementation chapter delves into the mixed-method approach

employed in the study. It explains the use of semi-structured interviews with industry

professionals to gather data and generate hypotheses. Thematic analysis and grounded

theory are employed as analytical methods to derive hypotheses from the interview

data. Lastly this chapter touches on the member checking process which is held to

improve the validity and accuracy of the authors’ interpretation of the interview

responses.

The findings and analysis chapter presents the outcome of the semi-structured

interviews and the systematic literature reviews applied to the hypotheses presented. It

provides a comprehensive analysis of the data gathered and offers insights to help

answer the research questions.

Finally, the discussion and conclusion chapters explore potential challenges and

implication for future research in regards to the development of embedded Linux

systems. The chapters reflect on gaps in understanding and proposes directions for

further research within the field. The conclusion chapter summarizes the study’s

findings and presents the answers to the research questions presented in the

introduction.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

5

4 Introduction

The study is using mixed methods of qualitative and quantitative data analysis. The

qualitative data will be collected through semi-structured interviews and coded into

themes through thematic analysis. Which will lay the foundation for generating the

hypotheses through grounded theory. The hypotheses will then be validated through

empirical data found in a systematic literature review. Concluding, the study will

investigate if Linux has the potential to reduce the time to market for new embedded

systems. It will also highlight shortcomings that prevent Linux from being used within

the industry.

4.1 Background

The demand for advanced functionality in embedded systems has increased in recent

years. Many of these systems still use traditional microcontrollers in their

development (VDC Reasearch, 2018).

Developing advanced functionality on a microcontroller-based system can be a more

time consuming and costly process compared to developing it on a Linux based

system. Another potential drawback of traditional microcontroller-designs is the

inherent use of low-level languages. These languages are considered to require a more

time-consuming process to produce functionality compared to high-level languages

that would be available in a Linux system, low-level languages also offer more

limited access to third party libraries.

An embedded Linux system also presents drawbacks however, the complexity of the

system makes it less reliable for real-time requirements and many developers are

already hesitant to use third party software because of licensing issues.

To address these issues, this research aims to explore the potential of Linux in

improving time-to-market speed for embedded systems. The objective is to identify

and analyze benefits and challenges associated with the utilization of Linux within

embedded real-time systems. Contributing valuable insights to the existing knowledge

base of embedded Linux systems.

4.2 Purpose and research questions

The primary goal of this study is to understand how access to Linux can reduce the

development time of an embedded system. Linux has both the benefit and drawback of

being a more complex system than embedded development is normally utilizing. A

benefit that comes with the complexity is that it has access to a larger suit of potential

tools to ease the development, a drawback that comes with the complexity is that

provides less low-level control of the system and additional overhead to handle during

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

6

development. The study aims to investigate the feasibility of Linux as a real-time

operating system and the underlying reasons as to why it is increasingly adopted in

embedded systems (Market Reports World, 2023).

Previous research by Ionescu & Enescu (2020) suggests that utilizing higher-level

programming languages can lead to shorter development times, although it may come

at the cost of reduced system performance. This research seeks to explore the possibility

of minimizing development time through the incorporation of more versatile libraries

available in higher-level languages while also examining the potential impact on system

performance.

To achieve these goals, the following research questions will be investigated:

• How can Linux be used to reduce the time required for development in

embedded systems

• What factors make Linux an appealing or less appealing choice for embedded

system development?

4.3 Scope

The scope of this research is to investigate the feasibility of reducing development

time of embedded system projects in commercial and industrial environments using

Linux. Specifically, this study will explore the following aspects:

• The effectiveness of Linux in the development process, including its flexibility

and ease of use which is facilitated by the available tools and resources within

the Linux community.

• The suitability of Linux as a real-time operating system with respect to its

reliability and performance.

• The experiences and perspectives of professional Linux and/or embedded

developers to identify strengths, weaknesses, and potential improvements

when using Linux as a real-time operating system.

• The current state of the art knowledge within the field through systematic

literature analysis of the hypotheses built upon interview findings.

4.4 Delimitations

This research is subject to limitations that should be taken into consideration:

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

7

• The study will be limited to professionals with experience of using Linux for
software development in industrial or commercial settings. This will include
Linux developers and embedded developers. This limitation might obfuscate the
generalizability of the results.

• The interviews will be conducted with a small sample size of professionals and
may therefore not saturate the full range of perspectives for how Linux can be
used to reduce development time.

o The sample group consisted of a 100% male group
o Age varied between 25-50+ years old
o Experience is displayed in Table 2 below

• The study will be limited to the current state of Linux and will not account for
any future developments of the technology.

• The study will not cover the entire development process but will focus only on
the potential of using Linux to reduce development time.

• The research will not examine the economic or financial aspects of using Linux
as an operating system.

• The study will not investigate the impact of hardware or firmware on the
performance of Linux as a real-time operating system.

4.5 Report Disposition

This report is structured into five main sections. The introduction chapter provides an

overview of the study's scope, purpose, background, and research questions.

The subsequent chapter, theoretical background, delves into the relevant existing

literature and theories that form the foundation of the research questions and study

design.

The method section outlines the mixed-methods approach employed, encompassing the

interviewing process, theory generation, and systematic literature review.

The findings and analysis chapter presents the results obtained from the interviews,

systematic literature review, and overall study findings.

Lastly, the final chapter explores these results in greater depth, discussing potential

challenges, implications for future research, and the benefits of Linux in development.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

8

5 Theoretical background

5.1 Grounded Theory

The research must contain several characteristics to be a grounded theory approach

according to Tarozzi (2020).

• To generate a theory or conceptual framework, using empirical data. To

develop a theory by adding data and at the same time take a step back and see

how the data connects.

• To explore a process, where a process is things that happen in order, start to

finish.

o The research questions at hand are connected with the development

process, and gaining a comprehensive understanding of its intricacies

and potential variations is a key objective that will be facilitated through

the conducted interviews.

• To employ theoretical sampling, this is about trying to fill voids in your theory

while you develop it.

o Through the utilization of qualitative interviews in the research, the

potential for new questions to arise during the analysis of each interview

is introduced. These questions can be further explored in subsequent

interviews, and if left unanswered, they can be subjected to additional

investigation in the subsequent stages of the research.

• To collect data and analyse them simultaneously, this is required to follow the

theoretical sampling characteristic. You cannot collect all data and then analyse

it.

o Each subsequent interview is influenced and shaped by the insights

gained from the previous interviews, contributing to the iterative

development and refinement of the research approach.

• To use the method of constant comparison of every level of the analysis, this is

about questioning the data and connecting it during the analysis to make sure

your understanding of the concept you are investigating is progressing.

o In the context of conducting and analyzing interviews, constant

comparison becomes a natural and essential part of the process. As

interviews provide rich and diverse data, continually comparing the

responses from different participants, looking for similarities,

differences, and emerging themes comes naturally.

• Research questions using sensitizing concepts. While moving forward with

grounded theory you should create your own categories, while adding to your

theory, do not get stuck in what is already established.

o This issue will be mitigated by developing an independent

understanding based on the interview findings before establishing a

comparison with existing knowledge.

• Conceptualization versus description. It is about developing a theory and not

describing how something works. Take another step based on your findings

after you have gathered and analysed data.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

9

• Production of memos and diagrams. To follow grounded theory, you should be

writing notes, later on in your research you will be able to see how your theory

was developed. If you are able to show the data in different stages of the process

it will further show the development of your theory.

The nature of the research is exploratory, and the final outcomes remain dynamic and

subject to evolution throughout the interviews. While striving to fulfill the criteria of a

grounded theory approach, it is acknowledged that further investigation is necessary

to definitively classify the study as such.

Grounded theory is useful for answering research questions related to processes and

complex actions (Tarozzi, 2020). Which is what this research aims to achieve by

answering the research questions.

5.2 Qualitative Interviews

Qualitative interviews are well-suited for grounded theory methodology due to their

inherent characteristics of being open-ended yet directed (Charmaz, 2014). Grounded

theory aims to develop theories that emerge from the data itself, while qualitative

interviews provide a rich source of data that allows for in-depth exploration of the topic.

The interviews have prepared questions but the answers from each participant can take

the discussion in different directions. This fits the purpose since even if there exists

prior experience in the area, the interviews aim to learn as much as possible from the

participants and the insights that are gleaned from the answers. Also, the interviews aim

to provoke the participants into asking their own questions around the subject in order

to establish research gaps within the field.

5.3 Systematic Literature Review

“Systematic literature reviews can be undertaken to examine the extent

to which empirical evidence supports/contradicts theoretical hypotheses” (Kitchenham

& Charters, 2007, para. 12).

From the answers gathered from the interviews, hypotheses are created from the most

distinguished topics in the interviews.

Systematic literature reviews are then employed to explore how well the hypotheses

hold up against empirical research.

Kommenterad [A1]: Nicely written.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

10

6 Method and implementation

6.1 The Mixed Methods Approach

In this study, the mixed methods approach was used to combine qualitative and

quantitative research methods. This approach allowed for gathering of in-depth insights

from interviews with industry professionals and validate them against empirical

research through systematic literature review.

According to Hesse-Biber (2010) when using the mixed-methods approach the

researcher is looking to converge all the data collected by the different methods to

enhance the credibility of the research findings. To achieve this enhanced credibility

methods triangulation is used to study the same research question.

Another aspect of mixed method research that Hesse-Biber (2010) brings up is

complementarity. Which lets the researchers gain a more complete understanding of the

research problem and helps clarify the given result.

6.2 Preliminary Interviews and Hypothesis Generation

The qualitative data in this study was obtained from semi-structured interviews with

industry experts who have multiple years of professional experience in Linux,

embedded systems, or both. Semi-structured interviews were conducted with six

experts, each lasting between twenty minutes to an hour and covering a range of open-

ended questions designed to elicit insights into their experiences and perspectives. The

interview guideline used for the interviews can be found in the appendices: section 11.1.

All interviews were held in Swedish and were then translated to English.

The data was analyzed using the thematic analysis method to identify patterns and

organize the collected information into manageable parts. Braun & Clarke (2006)

describe thematic analysis as a relatively straightforward form of qualitative analysis

and explain that it is a suitable technique for researchers new to qualitative methods.

They also frequently comment on the flexibility of the method, which increases the

adaptability and broadens the range of insights that can be obtained from the data. Given

the authors’ limited experience with qualitative data analysis and the flexible nature of

the method, thematic analysis was chosen.

In addition to thematic analysis, grounded theory was employed for generation of

hypotheses. Grounded theory is a systematic methodology that develops theory from

the analysis of qualitative data. This approach is also noted for its flexibility. Charmaz

(2006) states that even Glaser and Strauss, the widely recognized founders of grounded

theory, encouraged readers to use the method flexibly. Charmaz (2006) characterizes

grounded theory as a set of principles and practices rather than a rigid set of

methodological rules.

This aspect of grounded theory had great appeal, as the semi-structured interviews were

designed to elicit open-ended and unpredictable responses from interviewees.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

11

Grounded theory provided the necessary flexibility to generate hypotheses based on the

thematic analysis of the interview data.

6.3 Member Checking Process

To ensure validity and accuracy in the understanding of the interview responses,

member checking was conducted with the participants. Member checking involves

“asking the participants to go over transcripts of their interviews to comment on

accuracy or even to review the researcher's interpretation” (Josselson, 2013, p.178.).

Full transcripts of the interviews were not sent as they are very long, in an attempt to

reduce the burden on, and also increased the likelihood the interview subjects would

read and respond to the request. Instead extracted codes from the interview were sent,

along with a quote from their answer where the code was extracted from. The question

that prompted the quoted answer was also. A response was then requested from the

interviewees to ensure that the authors interpreted their answers correctly. This was to

validate that the codes of their answers fairly represent their point of view.

6.4 Purposive and Snowball Sampling

The interview participants for this study have been selected through purposive and

snowball sampling. Purposive sampling means the authors have reached out to

professionals they believe have experience and expertise that can contribute to the

study. Snowballing sampling means that the interview participants are asked to

contribute with suggestions of more potential participants they think can help contribute

to the study even further.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

12

7 Findings and analysis

7.1 Interview Findings

The table below (Table 1) summarized the codes extracted from the interviews,

capturing the key themes as the code with a short description of the authors’ definition

and interpretation. An example quote is presented to further understand the meaning

behind the codes and give the reader a chance to interpret the interview subjects. The

frequency of occurrence shows in how many interviews the theme was observed. The

aim of the table is to present a concise and structured overview of the key points raised

from participants and establish a foundation to the subsequent analysis and discussion

chapters.

Below the key themes is a table (Table 2) providing experience background of the

interview participants in order to strengthen the validity of the respondents’ answers.

Table 1. Key Themes and Findings from Semi-Structured Interviews.

Code Description Example Quote Frequency

Third-Party

Libraries

Extending product lifespan,

requiring careful management,

and potentially affecting

product pricing.

“We have used proprietary libraries for

some projects, and you are then dependent

on the supplier being around and not

stopping support. We have libraries that

have been compatible with certain versions

of another operating system, but they have

stopped supporting it for new generations,

and we have not been able to upgrade.

That’s where open-source comes in because

you have other options, often with a large

community ensuring it stays up to date.” -

Axel

6/6

Performance

Challenges in optimizing Linux

for performance in real-time

applications, compared to

dedicated real-time/headless

OSs.

“We had to have a bunch of real sly Linux

foxes trying to optimize everything so that

the Linux system would be sufficiently

performance-efficient. That was a

challenge with it” (using Linux) - Erik

6/6

Safety

Concerns about Linux's

security and execution

guarantees, weighed against

performance and real-time

capabilities.

“Yes, there were some question marks from

the industry regarding Linux, it was in the

automotive industry and there were various

safety aspects of it that they thought were

very questionable to use Linux and that you

could guarantee that things happen in the

same way using a Linux system.” - Erik

6/6

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

13

Development

and debugging

Increased complexity in

hardware debugging, increased

software debugging capabilities

in Linux, terminal advantages,

and external problems with

Linux.

“Usually, it's not the entire Linux system but

rather your application, that goes a long way

(in debugging). But if there are really

advanced bugs, it could be the entire system

or the operating system that is a factor. This

increases the complexity of troubleshooting,

as you have more parameters that can cause

issues, like losing a file every now and

then.” - Henrik

6/6

Challenges

with Linux

Troubleshooting difficulties,

potential compatibility issues,

and challenges managing

dependencies.

“There are pros and cons. One disadvantage

is that more things happen under the hood

that you don't have full control over. If you

have some custom stuff, the drivers become

a bit more cumbersome, because in Linux,

everything is built as a file, including drivers

for much hardware, and it becomes a bit

unintuitive when developing for hardware

compared to a hard embedded system. In an

embedded system, you might be able to

create a driver that is more structured based

on what it does and not how the operating

system expects it to look.” - Axel

5/6

Real-time

requirements for

Linux

Difficulties using Linux for

strict real-time demands due to

performance and resource

management constraints.

“So, it's also about safety. We must not do

anything that is dangerous. So, there is that

aspect, and also the real-time aspect. I don't

think we could currently switch to an

entirely Linux-based node that does

everything in a product, at least in our

world, without having other nodes to

ensure that we stay safe. That the product is

not dangerous.” - Henrik

5/6

Advantages of

Linux

Access to extensive libraries,

ready-made solutions, and ease

of use for certain tasks.

“Yes, but it was very easy to get everything

started, got started quite easily and, as I

said, there is a lot of support available. You

never have to reinvent the wheel in the

same way. So, you can just download a

library.” - Erik

4/6

Open-Source

Open access to source code,

less desirable for proprietary

code, and potential

discontinuation of projects.

“I think that to the greatest extent possible;

we will write everything that is needed in a

mower ourselves, and we will not want to

share that with open source.” - Gustav

4/6

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

14

Development

Process

Bring-up challenges, increased

Linux development process

steps, and differences between

Linux and other systems.

“Why do we use Linux? Well, I think that

to a large extent it is about having

dependencies on suppliers and

manufacturers who have different libraries

that they had available for Linux, which

made it easiest to do the development in

Linux as well, so you could just add their

code.” - Erik

4/6

Maintenance

and Security

Maintenance and security

vulnerability concerns for

Linux systems compared to

custom real-time OSs.

“Having this heavier operating system, more

expensive processor, more expensive

components, and a kind of maintenance as

well. Because, I mean, you still need a team,

probably to maintain a Linux distribution

over time. There are many security

vulnerabilities, especially if you have a

connected product. You basically need to be

able to update it if there's a very serious

security breach around the kernel or

something like heart bleed or what has been

in the SSH/SSL libraries, for example. So,

you need to be ready to deal with that, and

it's a cost.” - Henrik

3/6

Table 2. Interview Respondents Experience Prior to the Interviews.

Name Expertise Years of experience

Henrik Software engineer 10+

Axel Embedded systems 20+

Erik Software engineer 10+

Gustav Embedded systems 20+

Felix C++ and game development 5+

Bertil C++ and backend development 2+

Note. The expertise noted is the main field that the respondents have worked with in a

professional setting and is in no way an exhaustive list of their skills or experience.

Names are pseudonyms.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

15

7.2 Hypothesis Generation

Here the hypotheses generated by the qualitative data collected during the semi-

structured interviews will be presented. The transcripts were thematically analyzed into

patterns and key themes where grounded theory was then employed to generate the

following hypotheses.

1. Proper utilization of available libraries and open-source solutions for
Linux leads to reduced development time

The most prominently mentioned aspect within the interviews was Linux’s vast access

to libraries and ready-made solutions. This suggests that development time can

potentially be shortened by proper leveraging of these resources rather than creating all

components from scratch.

The interview subjects highlighted the potential benefits of the open-source nature of

Linux and its community driven development. Which is beneficial when it comes to

maintenance and patching security flaws in software components. However, license

agreements and ethics might come into consideration when companies want to preserve

their codebase and keep it proprietary. Thus, making open-source aspects less desirable.

2. Linux struggles to meet strict real-time and security requirements in
embedded systems development.

The concern for Linux ability to meet real-time requirements was expressed by most

interview participants. Especially in situations where precise timing is crucial. In

situations where strict real-time demands are in place Linux may not be able to meet

those requirements due to its limitations in resource management and potential

overhead aspects.

During the interviews, participants mentioned the security aspect of Linux. As a more

general-purpose OS Linux cannot guarantee the exact execution of processes and is

likely to suffer more security vulnerabilities as it is severely complex in comparison to

that of any traditional or custom-made real-time operating system.

3. Linux presents challenges in terms of troubleshooting and managing
dependencies.

Interview participants expressed the concern for raised difficulty in troubleshooting

errors in Linux systems. The participants also mentioned the potential compatibility

issues between software and hardware and maintaining and managing dependencies

when using external libraries.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

16

7.3 Systematic Literature Analysis of Hypotheses

This subchapter will investigate how the hypotheses derived from the semi-structured

interviews hold up against pre-existing research in the field. The aim is to validate and

challenge themes and trends from the qualitative analysis through a systematic literature

analysis.

Each hypothesis will be reviewed individually and the search strategies can be found in

the appendices: section 11.2.

7.3.1 Development Time and Access to Open-Source Software

The most asked questions regarding open-source software (OSS) licenses on Stack

Exchange sites are not general about licenses, but users seem to have questions

regarding a specific license according to a study by Papoutsoglou et al. (2022). The

same study found that posts about how linking with OSS affected the licenses, got a lot

of attention but seemed to be harder to answer as they were viewed a lot but had less

comments.

In a survey conducted by Almeida et al. (2018), they try to get a better insight into

developers understanding of different types of OSS licenses. They ask the respondents

about three different licenses that differ in their restrictions. With the responses from

their survey, they could observe that when only one license is involved, developers

usually understand how the license works. But they also observed that developers did

not have a good understanding of how licenses interact when there is more than one

involved.

Lundell, Lings, & Syberfeldt (2011) conducted a study where they analysed the views

of professionals in the embedded development industry who were familiar with OSS.

They found that professionals found it easier to maintain long term maintenance with

OSS instead of proprietary software. In embedded development the systems usually

need to be maintained over a long period of time. This makes the risk, that a commercial

vendor supplying a proprietary software leaving the market higher, simply because they

have a longer window of time to leave. OSS provides at least some control over the

software. They also learned that professionals expressed that it was easier to find

consultants that could help and support with OSS than with proprietary software. They

also learned that many professionals viewed OSS as low risk in licensing perspective,

as they often had experienced problems with licensing when using proprietary software.

However, they also learned that in the embedded domain, long term maintenance of

OSS needed both an involved commercial player as well as contributing volunteers to

be effective.

An analysis of Android smartphone manufacturers and their contribution to the

development of the Android OS, showed that companies with the most contributions

also had the shortest time to market after each release of the Android OS versions (Shiu

& Yasumoto, 2016).

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

17

Figure 1: Source code contribution related to product release. Source: Shiu &

Yasumoto (2016).

Similarly, Nagle (2014) found that all companies could increase their productivity by

using more OSS, although it did also show that the benefit for companies in the service

industry was larger than for companies in the production industry. Nagle (2014), unlike

Shiu & Yasumoto (2016) was unable to confirm that a company's input to the

development of the OSS would correlate with the output they would get from OSS.

7.3.2 Real-Time Requirements and Safety

In a journal article, Dodiu et al. (2010) examined the real-time capabilities of a Linux

system. Their experiments measured processor load and found that the amount of jitter

observed during a CPU task period varied depending on the load. The task period was

300μs, and their worst-case measurements were 22μs and 100μs of jitter for minimum

and maximum CPU loads, respectively. This equates to 7.4% and 33% of the main task

period. This result was considered unsatisfactory, as it could potentially delay critical

tasks of other processes in the system.

Dodiu et al. (2010) concluded that while the Linux system might not be suitable for

short duration, high-frequency tasks, for longer task periods the jitter that occurs in the

CPU becomes more acceptable. Ultimately, depending on the application, Linux could

be used as a hard real-time controller as long as the jitter does not prevent the

functionality of the application.

In a series of research experiments conducted by Adam (2021) the response times of

three real-time Linux systems were measured. These systems were using the

PREEMPT_RT patch, a patch aimed to increase real-time performance of Linux

systems. A majority of the latencies measured fell below 50μs and the maximum

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

18

latencies averaged across the systems was 160μs. Adam (2021) points out these

latencies are significantly lower than that of the standard Linux kernel and provides a

deterministic system as long as the upper bound latency is an acceptable safety margin.

In another study, Adam et al. (2020) made use of the PREEMPT_RT patch to

successfully use a COTS device with a Linux operating system as a real-time control

system. The focus was to find efficient system solutions for real-time applications,

specifically on COTS devices. One of the conclusions was the possibility of

development time reduction as proclaimed in this quote: “Another outcome of this

research is that such a COTS-based approach can reduce the development time and ease

the implementation of low-cost experimental testbed systems for further research in

real-time control based on COTS components” (Adam et al., 2020, p. 14)

Bruzzone et al. (2009) researched the feasibility of using Linux for controlling

embedded real-time applications. The research experiments compared two versions of

Linux using different threading properties while also investigating the impact of the

ability to preemptively interrupt scheduled tasks. Table 2 below shows that with

preemption activated Linux can for the vast majority operate within 50μs of requested

periods. However, there are outlier cases where the requested periods may be close to

300μs delayed

Table 3. Timing parameters between LinuxThreads/NPTL libraries and preemption

option activated/deactivated Source: Bruzzone et al. (2009)

Library Preemption Tmax (μs) T99,99% (μs) T 99,9999% (μs)

LinuxThreads No 752 44 114

LinuxThreads Yes 281 39 112

NPTL No 495 39 114

NPTL Yes 243 18 106

Note. Tmax refers to the maximum discrepancy measured on the requested period of

the task scheduler. T99,99% represents the 99,99-percentile threshold and T99,9999% the

99,9999-percentile threshold of the measurements.

7.3.3 Troubleshooting and Debugging in Linux

Based on the findings from Wei et al. (2021) it is evident that a significant portion of

security bugs in open-source projects are related to memory operations, authentication

requests, resource management, and security configuration. Notably almost half of all

security bugs are categorized as memory operation bugs. Wei et al (2021) suggest that

developers add more tests to identify such bugs while further considering the feasibility

and rationale behind resource references while developing, in order to reduce the

occurrence of such bugs.

In a journal Article from Spear et al. (2012) the authors highlight that the increased

parallelism and complexity of multi-core systems presents daunting problems for

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

19

developers. In order to alleviate the problems, visualization of the system’s behavior

was desired. In the Linux community there existed several tracing technologies that

used incompatible data formats and there was also a desire to share analysis tooling.

Ericsson and the Embedded Linux Forum financed the endeavor to create the common

trace format (CTF). CTF offers tracing capabilities across applications, architectures,

and programming languages. Spear et al. (2012) believes that the availability of open-

source components will enable developers to add tracing to their applications and grant

an increased understanding in multi-core systems’ behavior.

The advancements within tracing mechanisms have not only brought on improved

system performance, but it also presents potential new benefits for the debugging

process. In a study by Beamonte & Dagenais (2015) the authors presented efficiency

improvements using the Linux Trace Toolkit: next generation (LTTng). Primarily

targeting reduced latency and improved determinism. The study showed maximum

latencies at 7 and 6 μs respectively for the standard Linux Kernel and the

PREEMPT_RT patched kernel. Through the reduced latencies the tracing mechanism

became increasingly stable with less variance in duration. According to Beamonte &

Dagenais (2015) this allowed LTTng to support tracing even for very demanding real-

time applications.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

20

8 Discussion and Further Research

8.1 Comparison Between Interview Findings and Literature

This chapter presents a comprehensive comparison between the findings and insights

obtained from the semi-structured interviews with existing peer-reviewed literature.

From juxtaposing the findings with literature this chapter aims to reveal gaps in

understanding of the topics as well as strengthen or question the validity of the findings.

The aim is to explore novel perspectives that emerges from the interviews in order to

provide valuable additions to the existing body of knowledge.

8.1.1 Libraries

In both the interviews and the systematic literature review it showed that the biggest

concern for developers when using OSS is licensing (Almeida et al. 2018; Papoutsoglou

et al. 2022). The literature review will provide more detail on how it becomes more

complicated to understand how licenses interact when more than one is involved

(Almeida et al. 2018). The literature review also revealed that many developers had a

problem to understand how linking the OSS to proprietary code can affect how

proprietary code will fall under the OSS license, this can also indicate that many

developers are inclined to keep their own code proprietary.

The literature review suggested that in embedded there is a hesitancy to use proprietary

software because of the possibility of running into a longevity issue (Lundell, Lings, &

Syberfeldt, 2011). The interview participants spoke of third-party software as one of

the large benefits of having a Linux system over a pure embedded. If a developer does

not want to spend resources developing the software, OSS seems to be preferable to

proprietary in many cases. Not just the cost aspect but that licensing issue does not

necessarily get easier with proprietary software (Lundell, Lings, & Syberfeldt, 2011).

For effective maintenance of OSS in the embedded domain it is best to have both a big

commercial player and volunteers to contribute (Lundell, Lings, & Syberfeldt, 2011).

Shiu & Yasumoto (2016) claims that companies that contribute more to development

of OSS, in many cases will also have a shorter time to market after the software is

released. They showed that more companies over time started to contribute more to the

development of Android OS, the OSS their study were looking at. This was not

something that appeared during the interviews, the possibility that the company could

be involved in the development of the OSS.

Nagle (2014) claims that using OSS will increase a company’s productivity, this aligns

with the views of the interview subjects. As most of them came from the embedded

world, a Linux system would give them access to more OSS and that would mean that

they would need to develop less software themselves, and that would lead to less

development costs and shorter time to market.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

21

There seems to be a consensus that developers can shorten their time to market with

OSS, but at the same time developers seem to want to keep software proprietary. There

also seems to be a restraint to use OSS simply because developers do not understand

the license it is under and are worried the software being developed will fall under OSS

license. If companies were willing to make even a part of the company’s software OSS,

they could benefit from better maintenance and faster development of the software, the

companies would not need to worry as much about licenses either. But that would mean

losing proprietary rights to the software.

8.1.2 Real-Time Requirements

Findings from the systematic literature analysis and the interview findings support the

hypothesis that Linux struggles to meet strict real-time and security requirements within

embedded systems. Dodiu et al. (2010) observed jitter that could potentially delay

critical task of other processes. While Linux may be more suitable for longer task

periods, during short duration and high frequency tasks it was deemed unsatisfactory.

Similarly, Adam (2021) measured response times that could provide a deterministic

system as long as the upper latency bound was satisfactory. Bruzzone et al. (2009) Also

echoes that within the vast majority of cases Linux could operate within requested

periods, but there are outlying cases where the deterministic behaviors fail. Worth

noting though is that the largest outlier was 243μs for the Native POSIX Threads

Library (NPTL) which is the current standard for Linux systems today. While this is a

notably large discrepancy from the 99,99 percentiles; 18μs, it may still be sufficiently

small for many applications.

The interview participants justifiably echoed concerns regarding Linux’s ability to meet

strict real-time requirements. They expressed doubts regarding the precision of Linux

while highlighting its limitations of resource-management and potential overhead

aspects. The complexity of Linux’s general-purpose oriented nature raised concerns for

security vulnerabilities and participants believed that designated real-time or custom

operating systems granted better guarantees for exact process execution and

minimization of security vulnerabilities.

Overall, the comparison reveals a consensus that Linux faces challenges in meeting

strict real-time requirements in embedded systems development. While patches such as

the PREEMPT_RT patch show improvements, there are still occasional delays or

timing precision errors. This coupled with the inherent complexity of its general-

purpose nature prevents Linux from providing the same level of guarantees as a

dedicated real-time operating system.

8.1.3 Troubleshooting and Debugging

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

22

Spear et al. (2012) emphasized the need for improved understanding of multi-core

system behavior through tracing technology. The creation and open access to a protocol

such as CTF. As discussed by Spear et al. (2012), enables developers to share analysis

tooling and gain a better understanding of multi-core systems behavior. This resonates

with the advantages of access to extensive libraries and ready-made solutions that was

emphasized by the interview participants.

Additionally, Beamonte & Dagenais (2015) discuss the efficiency improvement that

tracing technologies have achieved. The reduced latencies and improved determinism

offered by the tracing tools enables powerful debugging tools even for powerful real-

time systems. Addressing some concerns, the interviewees had related to the ability of

troubleshooting and performance constraints of Linux.

Observing the findings from Wei et al. (2021), it is evident that security bugs in open-

source projects often relate to memory operations and resource management. This

aligns with concerns expressed by the interview subjects regarding challenges of

troubleshooting and potential compatibility issues of Linux systems.

Through comparison of the findings from the interviews and the literature analysis it is

apparent that developers face challenges in troubleshooting and debugging Linux

systems. Although literature presents insights of potential solutions, such as tracing and

enhanced deliberation behind the rationale of writing code, these are still challenges

that developers are required to solve during development of Linux systems. The

increased overhead generated by a general-purpose OS might be overbearing for safety

critical systems. Increasing standards on security also puts pressure on the producer of

systems to maintain distributed software, which incurs additional costs that could

potentially be avoided or reduced by building a more specific, custom OS.

Overall, the findings highlight the ongoing need for developers to find effective

solutions to troubleshooting and debugging on Linux systems, considering the

complexities and constraints of the development environment.

8.2 Implications for Future Research

The preceding discussion has shed light on several key areas that warrant further

investigation under the context of developing an embedded system using Linux. These

implications provide potential directions for future research that would enable a deeper

understanding of the challenges and opportunities that are associated with using open-

source software in in embedded system development

8.2.1 Libraries and Open-Source Software

There has been a lot of research done on OSS over the years, a lot less seems to have

been done on the use of OSS in embedded development. A big part of that might be

the fact that embedded development has access to a lot less OSS, so it is not used as

often. It could also be that embedded developers are more protective of their

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

23

proprietary rights. Some might argue that embedded development benefits greatly

from OSS, especially when it comes to maintenance of software, since longevity of a

product is important to embedded developers. Combine this with the fact that being

involved in development of OSS can create a head start when the product is ready,

and it seems it would be valuable to dive deeper into how companies can reach better

productivity if they make some of their software OSS, especially in the embedded

domain. This would also make it easier to handle licenses, since the product is already

OSS there is no worry about it becoming OSS. There is great value in keeping

software proprietary, but perhaps there is a worthy trade-off at some point.

There seems to be a lot of confusion among developers about OSS licenses. While

there is already extensive research done on the subject, why the confusion remains

and how it can be mitigated can also be an interesting subject to explore.

The use of Linux in embedded development would give access to a lot more OSS,

exploring the difference in available OSS more in depth and quantify it could maybe

help developers see the advantages or disadvantages of using Linux for embedded

development more clearly.

8.2.2 Real-Time Requirements

The challenges of meeting strict-real time requirements with Linux controlling

embedded systems have been highlighted in both the literature analysis and the

interview findings. However, further research is required to deepen the understanding

of this issue and explore potential solutions.

To further advance the current understanding of real-time capabilities in Linux systems,

future research could focus on investigating the effectiveness of real-time patches, such

as the PREEMPT_RT patch. This research path should aim to provide valuable insights

that these patches provide on reducing delays and improving timing precisions for real-

time scenarios.

Specifically, the research should consider factors such as task duration, frequency, and

criticality to evaluate its real-time performance in different contexts. Researchers can

gain a comprehensive understanding of the possibilities and constraints inherent to real-

time Linux by investigating the limitations, trade-offs, and alternative approaches

associated with these patches.

The exploration of alternative solutions, such as dedicated real-time operating systems

or custom-made operating systems, would provide a more nuanced understanding of

the limits of real-time Linux and highlight the potential benefits of alternative

approaches. A comparative analysis with this focus would enable developers to make

informed decisions when selecting a real-time solution for their embedded systems.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

24

Overall, further research within this area would address the current lack of

understanding regarding the limits and trade-offs that real-time Linux has. While also

providing guidance for developers seeking to leverage the other benefits of a Linux

System.

8.2.3 Troubleshooting and Debugging

The challenges that developers face while troubleshooting and debugging Linux

systems have been established both from the interviews and the literature analysis.

Further research is required to explore potential solutions to these challenges and create

strategies to address them properly.

Building on the challenges identified through the interviews, future research should

investigate which type of tools are missing in the Linux development environment,

compared to that of traditional embedded system environments. By identifying these

gaps, the Linux community can work towards developing necessary standards such as

the common trace format (CTF), in order to effectively create tools that developers need

and enhance the debugging capabilities for embedded Linux systems.

Additionally, research could focus on the development of robust techniques and tools

to effectively mitigate security vulnerabilities, with specific focus on memory

operations and resource management. Investigation of novel approaches and strategies

for ensuring secure memory operations could be invaluable for enhancing the overall

security and reliability of Linux Systems.

Overall, future research should highlight the importance of missing tools within the

Linux development environment and develop robust techniques for mitigating

vulnerabilities. By addressing these research paths, developers can be better equipped

to face the challenges posed, while ultimately enhancing the overall performance,

reliability, and security of these systems.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

25

9 Conclusions

In conclusion, this study has aimed to explore the potential of Linux reducing the

development time for embedded systems and investigate the factors which make it an

appealing choice for an operating system. While the discussion chapter mainly

highlighted gaps of understanding and proposed research questions, it has also shed

light on certain aspects related to the research questions.

• How can Linux be used to reduce the time required for development in

embedded systems

The findings suggest that Linux offers a vast array of libraries and ready-made

solutions, which can significantly contribute to the reduction of development time.

Adoption of such resources introduces additional considerations into the development

process, such as the need for continuous maintenance and compatibility issues.

However, the study failed to provide concrete evidence or quantitative data to support

the claims of reduced development time. Instead, it emphasizes the potential benefits

and need for further exploration.

• What factors make Linux an appealing choice for embedded system

development, despite the inherent trade-off of reduced overall control?

The discussion identified several factors that could lead to potential development time

reduction, including the availability of extensive libraries, open-source tools, and

through the use of ready-made solutions. While the potential benefits of using a such

as Linux in an embedded system sound quite positive, there are also trade-offs to

consider. One notable trade-off is the increased overhead associated with a general-

purpose OS compared to that of dedicated real-time operating systems. Others include

strict real-time requirements, troubleshooting ability, and licensing concerns.

Overall, the study has identified key areas for further research for development of

embedded Linux systems. The discussion has highlighted the complexities and

challenges associated with the incorporation of Linux to the embedded domain. By

delving deeper into these aspects, researchers can contribute to a more comprehensive

understanding of the advantages, challenges, and trade-offs associated with utilizing

Linux in embedded system development.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

26

10 References

Adam, G. K. (2021). Real-Time Performance and Response Latency Measurements of

Linux Kernels on Single-Board Computers. Computers, 10, 64. Retrieved from

https://doi.org/10.3390/computers10050064

Adam, G. K., Petrellis, N., Kontaxis, P. A., & Stylianos, T. (2020). COTS-Based Real-

Time System Development: An Effective Application in Pump Motor Control.

Computers, 9, 97. Retrieved from doi:10.3390/computers9040097

Almeida, D. A., Murphy, G. C., Wilson, G., & Hoye, M. (2019). Investigating whether

and how software developers understand open source software licensing.

Empirical software engineering: an international journal, Vol.24(1), 211-239.

Beamonte, R., & Dagenais, M. R. (2015). Linux Low-Latency Tracing for Multicore

Hard Real-Time Systems. Advances in Computer Engineering, 2015. Retrieved

from https://doi.org/10.1155/2015/261094

Braun, V., & Clarke, V. (2006). Using thematic analysis in Psychology. Qualitative

Research In Psychology, 3: 77-101.

Bruzzone, G., Caccia, M., Ravera, G., & Bertone, A. (2009). Standard Linux for

embedded real-time robotics and manufacturing control systems. Robotics and

Computer-Integrated Manufacturing , 25, 178–190. Retrieved from

https://doi.org/10.1016/j.rcim.2007.07.016

Charmaz, K. (2006). Constructing Grounded Theory: A Practical Guide Through

Qualitative Analysis (1st Ed). London: SAGE Publications Ltd.

Charmaz, K. (2014). Constructing Grounded Theory (2nd Ed). London: SAGE

Publications Ltd.

Dodiu, E., Graur, A., & Gaitan, V. G. (2010). Hard-Soft Real-Time Performance

Evaluation of Linux RTAI Based. ELEKTRONIKA IR ELEKTROTECHNIKA,

8, 51-56.

Hesse-Biber, S. N. (2010). Mixed Methods Research: Merging Theory with Practice.

New York: The Guilford Press.

Johannesson, P., & Perjons, E. (2014). An Introduction to Design Science. Springer

International Publishing.

Josselson, R. (2013). Interviewing for qualitative inquiry: A relational approach. The

Guildford Press.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic

Literature Reviews in Software Engineering.

Lundell, B., Lings, B., & Syberfeldt, A. (2011). Practitioner perceptions of Open Source

software in the embedded systems area. The Journal of systems and software

Vol.84(9), 1540-1549.

Market Reports World. (2023, May 19). Embedded Linux Market Analysis Report

(2023-2030). Retrieved from The Expresswire:

https://www.theexpresswire.com/pressrelease/Embedded-Linux-Market-

Analysis-Report-2023-2030_21358945

Nagle, F. (2014). Crowdsourced digital goods and firm productivity: Evidence from

free and open soure software. Harvard Business School.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

27

Papoutsoglou, M., Kapitsaki, G. M., German, D., & Angelis, L. (2022). An analysis of

open source software licensing questions in Stack Exchange sites. The Journal

of systems and software, Vol.183, 111113.

Shiu, J., & Yasumoto, M. (2016). Benefitting from Contributions to the Android Open

Source Community. Annals of Business Administrative Science, Vol.15(5), 239-

250.

Spear, A. , Levy, M., & Desnoyers, M. (2012). Using Tracing to Solve the multicore

System Debug Problem. Computer, 45(12), 60-64. Retrieved from

https://doi.org/10.1109/MC.2012.191

Tarozzi, M. (2020). What is Grounded Theory? Boomsbury Publishing.

VDC Reasearch. (2018, January 25). IoT and Embedded Operating Systems Market to

Reach 11.1B Units by 2021 According to VDC Research. Retrieved from

www.VDCResearch.com:

https://www.vdcresearch.com/images/pr/2018/jan/IoT-and-Embedded-OS-01-

25-18.html

Wei, Y., Sun, X., Bo, L., Cao, S., Xia, X., & Li, B. (2021). A comprehensive study on

security bug characteristics. Software: Evolution and Process, 33(10). Retrieved

from https://doi.org/10.1002/smr.2376

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

28

11 Appendices

11.1 Interview Guideline

Appendix A.

Interview Guideline

Interview Guideline

Introduction

• Introduce yourself and explain the purpose of the interview.

o An investigation into how Linux can impact the development time of

new embedded projects.

• Request permission to record the interview.

• Ask the interviewee to briefly introduce themselves and their background in

embedded and Linux development.

Experience and Background

• What experience do you have in developing embedded systems and Linux-

based applications?

• Have you worked on any embedded system projects that used Linux? If so,

can you describe:

o Why did the project use Linux?

o Was Linux beneficial or a disadvantage for the project?

o Did you encounter any challenges specifically because of the choice of

operating system?

Linux in Embedded Development

• What opportunities does Linux provide for shortening Time to Market?

o What disadvantages make Linux development longer to market?

• Are there features or tools exclusive to Linux that you find helpful for

software development?

o Are there any tools or features missing?

• Is the use of external libraries different when developing on Linux?

o How do third-party licenses affect development?

o How does access to open-source affect development?

o Is access to external libraries an important part of development on

Linux?

• How do you see the use of Linux affecting the development time of embedded

system projects?

o Does the availability of high-level languages make a difference in

development?

o Do high-level languages provide easier access for developers?

▪ Do all developers need to have knowledge of Linux?

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

29

• How does the use of Linux affect the costs and resources required for

application development?

o Price, time, skills?

o Do you see systems developed on Linux having access to more

resources than those developed with other solutions?

▪ If yes, why?

▪ How does this affect the overall product cost?

• What types of embedded projects would benefit most from using Linux?

Development Process

• Do you believe there would be any significant differences in the development

process depending on the OS used?

• How do you choose an operating system? Are there criteria or other factors

you consider?

• Does Linux provide equal opportunities for troubleshooting in embedded

systems?

• How does Linux affect the opportunities for continuous integration?

o In embedded systems?

o In software applications?

Technical Knowledge

• How do you feel about making changes to the Linux kernel?

o Is it reasonable to maintain changes?

• Would Linux still provide the low-level control required for embedded

development?

o If not, what is missing?

o If yes, why is it not used more often?

Future Directions

• How does the use of open-source and third-party libraries affect maintenance

and product lifespan?

• Where do you think the future of embedded development with Linux is

heading?

• What new technologies or advancements are you excited about in this area?

Conclusion

• Ask if there is anything else they would like to add or discuss.

• Are there any questions that they think were difficult to answer or

unnecessary?

• Ask if the interviewee can recommend someone else for an interview.

• Thank the interviewee for their time and insights.

• End the interview.

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

30

11.2 Systematic Literature Review Search Strategies

Appendix B

Search Strategy for Libraries and Open-Source Software

Platform: Primo

Filter: Peer-Reviewed, English

Search Terms: (“open source” OR “open-source” OR “third party”) AND (“librar*”)

AND (“development time” OR “development-time”) AND (“licenc*”)

Inclusion Criteria:

Studies that focused on open source in regard to development or developers in general

Studies that provide empirical evidence or theoretical analysis within the topics.

Study is Peer reviewed and written in English.

Study is published after 2007.

Exclusion Criteria:

Studies where the focus is a specific open-source software artifact

Studies that do not discuss any relevant aspects of how open source can affect the

development of software

Studies that lack any empirical evidence or theoretical analysis related to the topic.

Studies that are not peer reviewed or not in English.

Study is published prior to 2007.

Appendix C

Strategy for Linux Real-Time Performance

Platform: Primo

Filter: Peer-Reviewed, English

Search Terms: ("Linux") AND ("embedded system" OR "embedded development")

AND ("performance" OR "optimization" OR "real-time")

Inclusion Criteria:

Studies focused on Linux operating system in the context of embedded systems.

Studies that discuss performance, real-time application or optimization of the operating

system.

Studies that provide empirical evidence or theoretical analysis on the use of Linux in

embedded systems.

Peer reviewed studies in English.

Study is published after 2007.

Exclusion Criteria:

Fel! Använd fliken Start om du vill tillämpa Heading 1 för texten som ska visas

här.

31

Studies where the focus is not on Linux in the context of embedded systems

development.

Studies that do not discuss any relevant aspects to the topic performance of Linux in

embedded systems development.

Studies that lack any empirical evidence or theoretical analysis related to the use of

Linux in embedded systems development.

Studies that are not peer reviewed or not in English.

Study is published from before 2007.

Appendix D

Search Strategy for Linux Troubleshooting and Maintenance

Platform: Primo

Filter: Peer-Reviewed, English

("Linux") AND ((("dependenc*" OR "mainten*") AND ("open-source" OR "third

party" OR "library")) OR ("troubleshoot*" OR "debug*" OR "error*"))

Inclusion Criteria:

Studies focused on Linux operating system.

Studies that discuss troubleshooting or debugging procedures or studies that discuss

maintenance or management of dependencies.

Studies that provide empirical evidence or theoretical analysis within the topics.

Study is Peer reviewed and written in English.

Study is published after 2007.

Exclusion Criteria:

Studies where the focus is not on Linux.

Studies that do not discuss any relevant aspects to the topic troubleshooting or

maintenance of a Linux system.

Studies that lack any empirical evidence or theoretical analysis related to the topic.

Studies that are not peer reviewed or not in English.

Study is published prior to 2007.

	1 Abstract
	2 Contents
	3 Summary
	4 Introduction
	4.1 Background
	4.2 Purpose and research questions
	4.3 Scope
	4.4 Delimitations
	4.5 Report Disposition

	5 Theoretical background
	5.1 Grounded Theory
	5.2 Qualitative Interviews
	5.3 Systematic Literature Review

	6 Method and implementation
	6.1 The Mixed Methods Approach
	6.2 Preliminary Interviews and Hypothesis Generation
	6.3 Member Checking Process

	7 Findings and analysis
	7.1 Interview Findings
	7.2 Hypothesis Generation
	7.3 Systematic Literature Analysis of Hypotheses
	7.3.1 Development Time and Access to Open-Source Software
	7.3.2 Real-Time Requirements and Safety
	7.3.3 Troubleshooting and Debugging in Linux

	8 Discussion and Further Research
	8.1 Comparison Between Interview Findings and Literature
	8.1.1 Libraries
	8.1.2 Real-Time Requirements
	8.1.3 Troubleshooting and Debugging

	8.2 Implications for Future Research
	8.2.1 Libraries and Open-Source Software
	8.2.2 Real-Time Requirements
	8.2.3 Troubleshooting and Debugging

	9 Conclusions
	10 References
	11 Appendices
	11.1 Interview Guideline
	11.2 Systematic Literature Review Search Strategies

