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Abstract 
Purpose: This thesis aims to describe how to design and implement an IoT-Based 
digital twin framework for environmental monitoring in the indoor environment.   
To fulfill the purpose of the study, the following research question is answered. How to 
create a digital twin solution utilizing AWS to establish interaction and convergence 
between the physical environment in a classroom and the virtual environment? 
 
Method: As a research method, the research has conducted design science research 
(DSR). DSR is a new method, and it is an effective tool for enhancing engineering 
education research methods. 
 
Results: The study describes in detail the steps required to create the framework. The 
framework enabled interaction and convergence between the physical and virtual 
environments in a particular location. 
 
Implications: The research contributes to broadening the knowledge on using the 
Internet of things (IoT), digital twin (DT), and Amazon web services (AWS). The study 
provides future research with reference data and a framework to build upon. 
  
Research Limitation: Due to time constraints, the study's scope and limitations are 
limited to the technologies that the participating company, Knowit, provides. Knowit 
AB is a Swedish IT consulting company that supports companies and organizations 
with services in digital transformation and system development. The study aims to 
create an AWS-based IoT framework, not improve the digital twin concept. The 
framework was implemented at Jönköping University. This work is also limited to 
temperature and light intensity as environmental parameters. 
 
Keywords: Amazon web services (AWS), Cloud Computing, Digital Twin solution 
(DT), Environmental Data, Environmental Monitoring Sensors, IoT (Internet of 
Things), Smart Building.  
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Abbreviations 
AWS: Amazon Web Services. 
DSR: Design Science Research. 
DT: Digital Twin. 
HDMI: High-Definition Multimedia Interface. 
IoT: Internet of Things. 
JTH: Jönköping School of Engineering. 
MQTT: Message Queuing Telemetry Transport.   
OS: Operating System. 
RPi: Raspberry Pi.  
UI: User Interface.  
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1 Introduction 
The chapter provides a background and a clear motivation for the study and the problem 
area the study addresses. Further, the purpose and the research question are presented. 
The scope and delimitations of the study are also described. Lastly, the disposition of 
the thesis is outlined. 
 

1.1  Background  
Today the world is getting increasingly digital and interconnected, where more smart 
cities have become common in society. These smart cities and buildings are based on 
unique technology. These technologies refer to software and hardware making 
buildings "smarter." The concept of smart cities and buildings is built on the integration 
of the real world and the digital world generated by the Internet of Things, cloud 
computing, and digital twin to achieve people and thing perception, control, and 
intelligent services (Marmolejo-Saucedo, 2020).  
 
Kevin Ashton, the British technology pioneer, was the first to use the term "Internet of 
Things" (IoT) in 1999 to describe a system in which sensors connected physical objects 
to the Internet. Ashton defined the Internet of Things as an interconnected 
computational device that makes it possible to collect real-time data about a specific 
environment in a specific place (Radouan Ait Mouha, 2021). 
 
IoT is a linked network of computing devices, mechanical and digital machines, and 
objects. It enables data transmission without human-to-human or human-to-computer 
interaction (McClelland, 2020). 
 
Cloud computing is a revolutionary concept with multiple definitions for many 
corporations, governments, and consumers. Cloud computing has numerous definitions 
since it does not refer to a single technology but rather to a concept comprising a set of 
several different combined technologies. According to the IEEE Computer Society, the 
most comprehensive definition of cloud computing is "A paradigm in which 
information is constantly stored in servers on the Internet and cached temporarily on 
clients that include desktops, entertainment centers, computers, notebooks, handhelds, 
etc." (Almarabeh et al., 2016). 
 
Dr. Michael Grieves of the University of Michigan first proposed the notion of the 
digital twin in 2002, naming it "Conceptual Ideal for Product Lifecycle Management 
(PLM)" to reflect the relationship between actual and virtual space (Lo et al., 2021). 
It uses a digital format to replicate the physical model for remote monitoring, viewing, 
and control. It is a living model of a physical system that adjusts to operational changes 
in real-time using data from many different IoT sensors and devices (Bhatt & Shah, 
2014). 
 

1.2 Problem statement 
In terms of the evolution of the Internet of Things, it is estimated that by 2022, 85 
percent of companies' information technology platforms will host a digital twin. 
Comparable to remote access and control of smart home equipment using IoT and 
digital twins’ technologies, the framework will be the system that enables remote 
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monitoring and control of the indoor environment in a particular space (Marmolejo-
Saucedo, 2020).  
Automating environmental monitoring and control in Smart Buildings, where data is 
collected, transmitted, and managed without human intervention, requires 
interoperability and communication between devices. It also involves understanding 
and handling a large amount of environmental data. These requirements can be fulfilled 
by using the digital twin solution.  
The digital twin's definition varies depending on the field it is used in. Still, the standard 
definition of a Digital Twin is "a virtual dynamic representation of a physical system, 
which is connected to it over the entire lifecycle for bidirectional data exchange." 
(Digital Twin Development and deployment, 2021). Figure 1 below visualizes what a 
digital twin is. 

 
Figure 1. a visualization of Digital Twin’s concept (Digital Twin Development 

and deployment, 2021). 
 
Digital twins provide an intuitive way to store, organize, and access stockpiles of data 
generated by Internet of Things (IoT) devices in the Smart Building. The ability to 
comprehend how systems work and interact is improved by using a digital twin, as is 
the ability to examine parameters and interdependencies. A digital twin allows for low-
cost and risk-free experimentation as a virtual environment. The key benefits of digital 
twins are system understanding, what-if analysis, and clarity. The goal of clarity in a 
digital twin is to help verify analyses, improve comprehension, and make it easier to 
discuss findings and concepts (Digital Twin Development and deployment, 2021). 
 
It is required sensors, connectivity, data processing, and data visualization to count an 
IoT Solution as an IoT Solution. The reason to have a sensor is to capture environment 
monitory data, and connectivity is needed because the sensor must be able to send all 
the data to the cloud to process it in real-time. The benefit of having the data in the 
cloud is to have the ability to process and visualize data coming from different devices 
in real-time (McClelland, 2020).  
 



 

   3 

Cloud computing services like Amazon web services would be a significant benefit. 
Amazon Web Services (AWS) is Amazon's extensive, ever-evolving cloud computing 
platform containing platforms like AWS IoT Core and Amazon Timestream. (Amazon 
Timestream 2022; Amazon Web Services (AWS) 2020; AWS IoT Core features 2022) 
AWS IoT Core makes it possible to connect IoT devices to AWS Services. For IoT and 
operational applications, Amazon Timestream provides a fast, scalable, and serverless 
time series database service. (Amazon Timestream 2022; AWS IoT Core features 2022) 
 
The use of DT solutions in other fields than the industry has increased in the last few 
years (Marmolejo-Saucedo, 2020). The global COVID-19 pandemic in 2020 was one 
of the driving forces behind the increased demand for DT in the pharmaceutical and 
healthcare industries as well as the manufacturing industries. (MarketsandMarkets, 
2020) 
Realizing a massive technology like DT presents its own difficulties. The difficulties 
associated with developing a DT are proportional to its scope and implementation 
complexity. The most significant obstacles DT needs to overcome to reach its full 
potential are its high implementation cost and the lack of standards and regulations for 
the implementation. As there is a multitude of DT models and architectures in the 
literature, there is a need to define a consistent framework for DT throughout Smart 
Buildings that include a shared and mutual understanding of interfaces, standardization 
for uniformity, and an efficient design of data flow to facilitate data accessibility 
without compromising its security. (Fuller et al., 2020) 
 
Digital Twin: Origin to Future is research about DT history and future where the authors 
discuss DT’s concept and applications as well as the future and challenges of DT. The 
authors figured out the most considerable difficulties and obstacles DT needs to 
overcome to reach its potential. These difficulties and obstacles are due to the lack of a 
standard implementation of the DT framework, which leads to high costs and time when 
it comes to implementing the framework based on DT’s concept. (Singh et al., 2021) 
 
A Smart Campus' Digital Twin for Sustainable Comfort Monitoring (Zaballos et al., 
2020) is research using DT solutions in the indoor environment for Sustainable Comfort 
Monitoring. The research does not show a standard DT solution design and 
implementation method in AWS. In A Smart Campus' Digital Twin for Sustainable 
Comfort Monitoring, the authors used only Microsoft Azure and AWS solutions for 
image recognition. 
 
Industry 4.0 and the Digital Twin for Building Industry (Mateev, 2020) is another 
research that provides a framework based on DT and IoT utilizing Microsoft Azure 
(Azure Digital Twins Service and Azure IoT Stack). The study does not provide a 
technique for designing and implementing a framework using AWS. 

1.3 Purpose and research question 

As mentioned in chapter 1.2, there is enough information like architectures and models 
in the literature about IoT and DT’s technologies. However, there is a lack of standard 
method DT’s digital twins’ solutions in AWS. The main goal of this framework is to 
overcome the challenges that arise with the use and development of DT by providing a 
standard method for design and implementation that saves time and cost. 
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This gap allows research on creating and implementing a generalized and extensible 
framework based on IoT and DT technologies in the indoor environment for 
environmental monitoring using AWS. 

The framework will be used to achieve interaction and convergence between the 
physical and virtual environments in a classroom at the Jönköping School of 
Engineering (JTH) using a DT solution in AWS. 

To achieve this objective, the following research question has been posed: 

1. How to create a digital twin solution utilizing AWS to establish interaction and 
convergence between the physical environment in a classroom and the virtual 
environment?  

1.4 Scope and limitations 
Due to time constraints, the study's scope and limitations are constrained to be relevant 
to Knowit, with whom the study is being conducted in conjunction. The study is 
concentrating on using AWS. The decision to focus on AWS was made because Knowit 
is interested in AWS and because AWS provides a high level of protection for 
customers' virtual data. The market for AWS has a promising future due to its price 
model, scalability factor, and quick reaction time compared to other cloud computing 
services.  
 
The study aims to create an IoT based framework using AWS, not to improve the DT 
solution. Implementing was done in a lecture room at Jönköping University to address 
the research question in this study. Furthermore, because this work uses a specific 
sensor (Fibaro sensor), it is constrained by the sensor's output, in other words, 
temperature, and light intensity. 
 

1.5 Disposition 
This section will explain how the report is structured and briefly explain what is covered 
in these chapters. 
 
2. Method and Implementation. 

This chapter will describe and motivate the work process of the study. It creates 
a clear connection between the methods used to describe the implementation 
process for the framework and the research question. It explains in depth how the 
implementation is done and how the data is managed.  

 
3. Theoretical framework. 

The theoretical framework reviews the relevant research and the literature while 
providing a quick overview of the different technical components used 
throughout the study and their background. 

 
4. Results. 
 The chapter will present the design and implementation of the framework 

objectively and coherently. 
 

5. Discussion. 
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This chapter will discuss the results of the study concerning previous studies. The 
chapter is divided into two subsections. The first subsection will discuss the 
results concerning the purpose and research question. The second one is method 
discussion will discuss the choice of methods and the execution. 

 
6. Conclusions and further research. 

This chapter will present the conclusions from the study and suggestions for 
further research. 
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2 Method and implementation 

This chapter describes the method used in the study to get enough knowledge to answer 
the research question. The research method is Design Science Research (DSR), and it 
is a relatively new method that aims to build a new reality rather than describe an 
existing reality (Zhan & Walker, 2019). 

DSR is a problem-solving technique with varying objectives depending on the 
application domain. A DSR's primary objective is the creation of a novel technical 
artifact. This artifact will most likely be delivered in the field of information systems in 
the form of digital innovation (Dresch et al., 2015).  Figure 2 below shows the six steps 
in DSR and how they are related. 

 
Figure 2 below shows the six steps in DSR. 

 
The other objective of DSR is to produce not only a novel technical artifact, but also 
the necessary processes and procedures for its deployment and use in the problem 
context. It is a central research method in engineering, architecture, economics, and 
information technology domains because of its ability to solve problems and ways to 
improve or change existing solutions. DSR enables a thorough understanding of the 
problem, the development of a solution, and finally, the validation and refinement of 
the solution, and it consists of six steps (Grenha Teixeira et al., 2017; Peffers et al., 
2007; Zhan & Walker, 2019). 
 
Initial research for this thesis is the first thing to be done. During this phase, various 
data and information relevant to creating and implementing an IoT and DT solution are 
gathered. These findings are gleaned from peer reviewed research papers and articles 
in which existing data is extracted. 
 
Following the collection and evaluation of various data is the next step. This step relates 
to creating a framework based on IoT and DT solutions using AWS in a given space. 
This requires knowledge of the theoretical and technical components of the framework 
mentioned in chapters 3.3 -3.9. In addition, the ability to create software that can be 
integrated with hardware to achieve a specific goal. 
When the solution has been formulated and the framework has been established, it is 
time to demonstrate and evaluate the solution to determine whether it answers the 
research question the study seeks to answer and how it relates to other research. For this 
reason, this thesis employs DSR as its methodology. This is primarily since DSR is 
intended as a method for designing artifacts with the inherent purpose of solving 
problems via an iterative design process in which the artifact is evaluated. Thus, this 
methodology pairs well with software development, as it aims to reap the benefits of 
this iterative approach, which permits one to test, evaluate, and redesign their artifact 
in order to further its development. Moreover, the collected and generated data within 
the process is quantitative (Lapão et al., 2017). 
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2.1 Design Overview of the framework 
The framework employs an overall system architecture shown in Figure 3. The 
framework consists of two main components, the hardware component and the software 
component. The hardware component includes the environmental monitoring sensor, 
Raspberry Pi (RPi), and a Z-Wave Stick wireless transceiver. These devices are all 
managed by RPi using an operating system called OpenHABian.  
 
The software component includes the AWS, namely AWS IoT Core, Amazon 
Timestream, and Grafana. 
 

 
Figure 3 shows the flowchart of the framework. 

 
The environmental recorded data is transmitted to the AWS IoT Core with the help of 
the RPi connected to the AWS using the AWS IoT adapter. The data transmission is 
done using the message queuing telemetry transport (MQTT) data protocol for 
receiving and sending data. Data storing is done in Amazon Timestream and Grafana 
for data visualization. A detailed description of the components is provided in chapters 
3.3 – 3.9.     

2.2 Implementation  
Since the purpose of this study is to create and design a framework based on the DT 
concept using the AWS, the framework or the artifact was iterated and built around the 
RPi, using different hardware components and software to find the most reliable and 
accurate artifact. The iteration process consists of two different types of iterations. The 
first type of iteration is iteration for the choice of the hardware component, and the other 
type is about the configuration of these hardware components together to get the output 
data that answers the research question. 
The first iteration of the artifact, shown in Figure 3, used the RPi model 2 and two 
environmental monitoring sensors of type LM-1ZW,(Light Sensors) one for 
temperature and the other for light intensity. This iteration provided readable output 
data, but RPi model 2 worked only with an ethernet connection, and it is not available 
in the marketplace widely, which is unsuitable for standardization’s framework 
purpose. The other drawback of this iteration was that using two different sensors led 
to high costs and time for implementation. The second iteration of the framework used 
RPi model 3 B+ and Fibaro motion sensor. This iteration provided readable and good 
output data regarding the chosen hardware components for the framework. RPi Model 
3 B+ has features like a Wi-Fi connection, a low price, and ready accessibility on the 
market. Fibaro sensor is a multi sensor that senses both light intensity and temperature, 
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has ready accessibility on the market, and a big community. These features are suitable 
for standardization’s framework purpose. 
 
The other type of iteration that occurs during framework implementation is 
configuration iteration. The framework implementation follows the flowchart shown in 
Figure 3. The implementation process consists of three stages. 

2.2.1  Configure the RPi 

The first stage in the implementation process is configuring the RPi, which serves as 
the processor and connector of the entire framework; it also employs the operating 
system to instruct and control the functions of the other hardware equipment. The 
operating system, OpenHABian, has many built-in functions, which can be extended to 
perform more advanced functions like showing the log data and events of the hardware 
components connected to the RPi. The primary purpose of this stage is to configure RPi 
by connecting other hardware components and installing the operating system, 
OpenHABian, as shown in Figure 4b. and Appendix 1. The first iteration was to 
configure the RPi to receive the environmental collected data from the sensor where the 
data rate was 400 times per minute and at the same time send data to the AWS 150 
times per minute. This iteration produced undesirable results due to the RPi's inability 
to withstand the high pressure caused by the data transmission frequency. The data 
transmission frequency from the sensor to the RPi was reduced to 75 times per minute 
and 75 times per minute from RPi to the AWS in the second iteration, but the same 
issue arose again. Finally, the data transmission frequency has been reduced, so the RPi 
sends data to the AWS only if the collected data changes and a maximum of 60 times 
every minute per sensor. Conversely, RPi receives data from the sensor 75 times per 
minute. This iteration solves the problem of high pressure and provides the ability to 
add more sensors if needed. A detailed description of the configuration of the RPi is 
provided in Appendix 1. 

2.2.2 Configure environmental Sensor and Z-Wave stick  

The environmental monitoring sensor is the first component in the framework and the 
Fibaro motion sensor. It is connected to the RPi using a Z-Wave stick to establish the 
connection between the RPi and the Fibaro Sensor. The Z-Wave stick uses Z-wave 
technology that can connect many sensors simultaneously. This configuration's first 
iteration was that the sensor collected temperature and light intensity a hundred times 
per minute. This iteration provided unreadable and unexpected outcomes and odd 
behavior; after two weeks of continuous use, the battery ran out despite having a two 
year lifespan. The next iteration modified the configuration so that the sensor measures 
temperature and light intensity 75 times every minute instead of sending the data 400 
times a minute. This iteration provided no unexpected output data or behavior.  A 
detailed description of the configuration of the sensor and the Z-Wave is provided in 
Appendix 2. 

2.2.3 Configure AWS 

The software configuration can begin after the hardware components, such as the RPi, 
Z-Wave stick, and environmental sensor have been appropriately configured. The AWS 
configuration consists of three different steps. The first step is configuring the AWS 
IoT Core responsible for the registration of the RPi once it's running locally. The 
connection between the AWS IoT and the physical device (known as the thing in AWS) 
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must have a thing record, a virtual representation of the physical hardware. After 
registering the device, a Connection Kit, a software development kit with all the 
necessary libraries, and a sample project will be received. Once the Connection Kit has 
been configured and the code has been tested, running the code once will ensure a stable 
connection. Validating that the data has been received in the IoT Core is essential and 
is accomplished by displaying a list of the received data with the time it was received. 
The second step in the configuration process is to configure the Amazon Timestream. 
The data received in the IoT Core must be transmitted to Amazon Timestream to be 
processed. When processing the data, it is necessary to build an Amazon Timestream 
database using the standard AWS database settings, and it is important to encrypt the 
database with a key from the AWS Key Management Service (AWS KMS).  
 
In the first iteration, the framework is connected to the Stockholm region since the study 
is conducted in Sweden, and it works with no problems when it comes to retrieving the 
data in the AWS IoT Core. Unanticipated complications arose when it came time to 
configure the Amazon Timestream service; specifically, it was discovered that the 
Stockholm region does not possess the Amazon Timestream. In the second iteration, a 
search had to be conducted to find the region closest to Sweden to finish configuring 
the Amazon Timestream. The search concluded that the Frankfurt region should be 
chosen because it is geographically closest to the Stockholm region and contains the 
Amazon Timestream service. It was necessary to delete all configurations made in the 
Stockholm region for the Frankfurt region because the regions in AWS are entirely 
separate from one another. The choice of the Frankfurt region caused latency (Saud 
Albazei, 2021) in the arrival of environmental data from openHAB to Amazon 
Timestream. However, the latency is considered ineffective because the environmental 
data is received in the Timestream at the same hour, minute, and second that is received 
in openHAB from the sensor. In other words, the latency is at 800 milliseconds, which 
does not affect the accuracy and validity of the environmental data because it is still 
considered real time (de Kleijn, 2020). 
 
The Amazon Timestream was configured and served its intended purpose in its second 
iteration, but the measurement value always lost its decimal when inserted into the 
database. In the third iteration, this problem was solved by creating a new table in the 
database and sending the first value with decimals, and it was found that it is essential 
to send the first numbers with decimals if the sensor may send values with decimals. It 
was essential to check if the value contained the same between openHAB and 
Timestream. AWS Timestream requires a timestamp when data is completely inserted 
in the database because it is a time series database. The timestamp is generated when 
the data is sent from the IoT Core to the Amazon Timestream database; consequently, 
the time recorded in the database for the data is before its insertion. From openHAB 
data was sent 2022/5/27 at 10:53.11.908 and to Amazon Timestream 2022/5/27 at 
10:53.12.95. This means that the data was sent to the database in 1050 milliseconds. 
Amazon Timestream keeps track of all insertion latencies; at 2022/5/27 8:53 UTC, the 
average ingestion latency was 60.8 milliseconds. This means that it totally took 1110 
milliseconds to become completely inserted in the database.  
 
The last step in the configuration process is configuring Grafana, which is a 
visualization tool. The configuration is accomplished by adding Timestream as a data 
source in Grafana. To establish a connection, it is critical to provide the correct 
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credentials and database. Sensor data can be visualized with the help of dashboards and 
panels in different diagrams and tables depending on the purpose of the visualization.  
The first iteration of Grafana’s configuration had settings that made it take five minutes 
to update the charts. These settings produced undesirable results because five minutes 
is a long time where the collected data in Amazon Timestream has been changed several 
times before it is visualized in Grafana. During the second iteration, Grafana creates a 
line chart as soon as it receives the data. Each time Grafana requests new data in 100 
millisecond intervals instead of five minutes as in the first iteration. The results in the 
second iteration were similar to the data shown locally in openHAB. A detailed 
description of the configuration of the AWS is provided in Appendix 3-4.   
 

2.3 Data collection 
As regards answering the research question in the study, data is collected through a mix 
of available information and enacted testing. 
   
Firstly, gathering existing data is done by conducting a literature review, which is used 
to gain knowledge about which equipment is most effective and suitable for the 
framework. The equipment used in the framework fulfills the need to overcome the 
challenges for DT solutions when it comes to standardization, namely high cost and 
time. This review is based on data from peer reviewed articles and trustworthy websites 
about the equipment in these components. 
 
Secondly, this data is utilized as a starting point and a point of comparison for any 
results from the testing. As a result of executing these tests in a controlled environment, 
data sets are generated, which play a crucial role in software development because they 
facilitate the implementation and design of the framework. 
 

2.3.1 Data collection during implementation 

Once all equipment has been chosen, implementation of the framework can be 
conducted as shown in Figure 3. This process requires each hardware shown in Figure 
4a to be appropriately configured as shown in Figure 4b to the flowchart in Figure 3. 
The names of the components shown in Figure 4.a. are mentioned in table 1. 
 

Table 1 shows the names of components used in the framework 

Number  Equipment  Number  Equipment  
1 An HDMI cable. 6 SD card 
2 Fibaro sensor.  7 A keyboard 
3 Ethernet cable 8 Z-Wave stick 
4 RPi 3B +. 9 A mouse 
5 AC adapter 

 



 

   11 

 
Fig. 4. (a) Pre-configuration components; 4(b) post-configuration system 

 
Alongside the configuration to implement the framework, an array of verification tests 
to ensure that components have appropriately been configured and connected and the 
configured system behaved as intended. These verification tests are conducted to ensure 
that the data collected in real time and the values are relevant. One of these verification 
tests compares the collected data shown locally in the OpenHABian and the same 
collected data in the Amazon Timestream. Another test uses two sensors to collect data 
and compare the collected data. These tests are done in order to create the framework 
that achieves the interaction and convergence between the physical and virtual 
environment. 
 
The data collected during the observation of the implementation process is the result of 
configuring the components, and with the help of the verification tests, it will be 
compared to see if any data is irrelevant to the implementation process. If any irrelevant 
data has been detected, the verification tests will be repeated multiple times to ensure 
no irrelevant data has been detected. 

2.4 Data analysis 
The collected and generated data for this thesis will be analyzed utilizing the method of 
dynamic analysis and quantitative research method. The dynamic analysis method is 
ideal for investigating the dynamic qualities of an artifact, such as those observed in 
dynamic systems (Dwivedy & Eberhard, 2006). Using this method, the software is 
tested and assessed by executing it in real time. Instead of attempting to identify every 
error in the component by evaluating it on its own, the objective is to identify and 
address errors while the entire framework is running in its intended environment. 

2.5 Validity and reliability 
The study's credibility can be divided into validity and reliability. To ensure the 
reliability of the data, the authors documented every step they took. Every step and 
configuration taken while implementing and testing to answer the research question is 
recorded. This will ensure that the person who tries to create and implement the 
framework will have the same results as the authors. 
 
Selecting approaches was not random; instead, authors adapted the selection depending 
on the literature review they did and the existing knowledge in the field. 
 
Since validity means measuring what is relevant in the context,(Gunnarsson, 2020) to 
ensure the study's validity, the environmental data is collected in real time and then 
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compared in Grafana to ensure there is no delay between sensing and sending data. The 
hardware and software components are selected to fulfill the objectives of designing the 
framework. 
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3 Theoretical framework 
The chapter starts by presenting previous work from which the current study is inspired. 
Furthermore, a theoretical basis is given to provide a deeper understanding of the 
technologies being used in the research. 
 

3.1 Previous work  
From researching previous papers mentioned in chapter 1.2, (Fuller et al., 2020; 
Mateev, 2020; Singh et al., 2021; Zaballos et al., 2020) is known the definitions of DT, 
the applications of DT, and the challenges to implement DT.  One of the challenges 
identified by prior research is the lack of a standardized method for creating and 
designing a framework that provides solutions for saving time and cost to make the use 
of digital twins effective. 
 
Digital Twin: Origin to Future provides an overview of the current state of DT as well 
as its future applications and challenges. The purpose of this research is to examine the 
role and application of DT and how it can add value to existing systems in Smart City 
and other fields. DT can add value to any industry by decreasing time-to-market, 
optimizing operations, reducing maintenance costs, boosting user engagement, and 
fusing information technologies. The overview of DT discussed the various definitions 
of DT in accordance with their respective fields of study, in which the origins of DT 
and its early applications are explained and compared throughout the literature. The 
most interesting part of this work, which inspired the current study (IoT-Based Digital 
Twin Framework for Environmental Monitoring in the Indoor Environment: Design 
and Implementation), is the implementation challenges of a framework based on DT 
and IoT concepts. The key obstacle is the absence of regulations and standards, as there 
is no consistent, standardized, and generalized framework for DT throughout the Smart 
Building concept using AWS. This framework's practical design and straightforward 
implementation facilitate data accessibility without compromising its real-time 
nature.(Singh et al., 2021) 
 
Digital Transformation Revolution with Digital Twin Technology is an additional study 
that discusses the role of DT technology in the digital transformation revolution in 
various fields. As a result of the industry 4.0 industrial revolution, the DT concept, 
which is anticipated to affect numerous fields in the near future, has entered these fields. 
DTs have begun to be utilized in civil fields as well as industrial and engineering fields 
due to the time and cost savings they provide. If there is a standard methodology that 
makes the application and implementation of DT possible and practical, DT as a 
promising technology will have a direct impact on daily life. According to the study's 
findings, there is a deficiency of general guidelines that make designing and 
implementing a standardized framework that can be used in various fields feasible and 
practicable (Erol et al., 2020).  
 
Digital Twin: Enabling Technologies, Challenges, and Open Research is additional 
research addressing issues related to “What are the applications, challenges, and 
enabling technologies associated with IoT, data analytics, and Digital Twins?”. The 
study is answering the question by providing an overview of DT where its definitions, 
types, applications, and challenges are highlighted. As highlighted in this paper and 
observed in numerous new and emerging technologies, the lack of design and 
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implementation standardization is a significant challenge for Digital Twin. This causes 
disparities between Digital Twin projects in the Smart Building domain. Diverse 
definitions are a contributing factor; this, coupled with the lack of standardization, is a 
challenge that hinders the development of the Digital Twin technology.(Fuller et al., 
2020) 
 
Papers A Smart Campus' Digital Twin for Sustainable Comfort Monitoring (Zaballos 
et al., 2020) and Industry 4.0 and Digital Twin for the Building Industry, (Mateev, 
2020)  provide cause studies for DT implementation.  A Smart Campus’ Digital Twin 
for Sustainable Comfort Monitoring proposes a DT modeling procedure that combines 
a set of advanced intelligent features, such as an IoT network and cloud computing, to 
transform university spaces into information sources for intelligent decision-making 
processes, thereby reducing operational costs and improving the quality of life. 
Microsoft Azure is the cloud computing platform used for DT modeling (Azure Digital 
Twins Service and Azure IoT Stack.).  Industry 4.0 and the Digital Twin for Building 
Industry is a study that describes business cases and best practices in the design of 
Internet of Things (IoT) solutions for the construction industry that are powered by DT. 
This study produces a reference architecture and prototypes that demonstrate the 
application of DT in Smart Buildings. This research is technology agnostic; however, 
prototypes of sample solutions are considered within the context of Microsoft Azure 
(Azure solutions, covering Azure Digital Twins Service and Azure IoT Stack.)(Mateev, 
2020; Zaballos et al., 2020) 
These studies do not provide any implementation or modeling for DT using AWS, 
which arouses interest in conducting research about design and implementing 
framework based on DT and IoT concepts using AWS. 
 

3.2 Digital twin  
Digital twin's (DT) definition varies depending on the context it is used, but the general 
definition of DT is a virtual vision of a product, service, or process that data scientists 
and IT professionals can use to run simulations before the machines are created and 
deployed. They are also changing how optimized technologies like IoT, AI, and data 
analytics are. The technology that underpins these DTs has a long way to go, and it is 
more likely to do so with people and procedures.(What is a digital twin?, 2019) 
 
DT technology entails the creation of virtual replicas of physical objects or processes 
that simulate their behavior. The goal is to analyze its effectiveness or behavior in 
specific situations in order to enhance its effectiveness (Marmolejo-Saucedo, 2020).  
 

3.2.1 The History of the DT 

Despite DT technology gaining enormous popularity over the past few years, the 
concept is not entirely novel. Michael Grieves developed the concept of Product 
Lifecycle Management (PLM) at the University of Michigan in 2002.(Grieves, 2016) 
The proposed model consists of three parts: real space, virtual space, and a linking 
mechanism for the flow of data/information between the two; the model was 
subsequently dubbed "Mirrored Spaces Mode." DT first appeared in 2010 in a draft 
version of NASA's technological roadmap. DT was also referred to as "Virtual Digital 
Fleet Leader" in NASA road maps. NASA was the first organization to define DT as 
"an integrated multi-scale, multi-physics, probabilistic simulation of a system or vehicle 
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that uses the best available physical models, fleet history, sensor updates, etc., to 
replicate the life of its flying twin." The plan was to use DT to simulate the aircraft's 
physical and mechanical properties in order to predict any fatigue or cracks in the 
structure, thereby extending the aircraft's remaining useful life.(Singh et al., 2021)  

3.2.2 Types of DT 

Different types of DT can be distinguished based on criteria such as the DT's creation 
time, level of integration, and applications. Based on these criteria, various authors have 
devised their own classifications of DT types. Grieves and Vickers identify two types 
of DT based on when DT is created during the product's life cycle. The first type, Digital 
Twin Prototype, occurs prior to the creation of the prototype, i.e., during the designing 
phase. The second type is Digital Twin Instance, created once the product is complete, 
i.e., during the production phase. (Singh et al., 2021) 
 
Kritzinger et al. (Kritzinger et al., 2018) classified DTs into three subcategories 
according to their integration level. The first type is the Digital Model, where in this 
type of DT, the data between the physical and digital objects are exchanged manually, 
so any changes in the state of the physical object are not immediately reflected in the 
digital object and vice versa. The second type is Digital Shadow, where the data from 
the physical object flows automatically into the digital, but the reverse is still done 
manually. Consequently, any changes to the physical object are reflected in the digital 
copy, not vice versa. The third type is Digital Twin, and in this form of DT, data flows 
automatically in both directions between the physical and digital objects.  Figure 5 
below shows the different types of DT based on the level of integration (1) Digital 
Model; (2) Digital shadow model; (3) Digital Twin.(Singh et al., 2021) 
 

 
Figure 5 shows the different types of DT based on the level of integration (Singh et 

al., 2021) 
 

According to Grieves, M. and Vickers, J.(Grieves & Vickers, 2017) DT can also be 
classified based on its applications. Prediction and interrogation are the two broad 
applications of a DT. As its name implies, a Predictive DT predicts the future behavior 
and performance of its physical counterpart, whereas an Interrogative DT is used to 
interrogate its physical counterpart's current or past state, regardless of its 
location.(Singh et al., 2021) 

3.2.3 Applications of DT 

In recent years, DT technology has gained immense popularity, and it has a bright future 
in many fields of study where numerous studies and research activities continue to be 
conducted. This resulted in the widespread application of DT in numerous fields, 
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including healthcare applications, industrial applications, and Smart City Management 
Systems (Erol et al., 2020).  

3.3 Environmental monitoring sensor 
The environmental monitoring sensor is the Fibaro Motion sensor. It is a multi-sensor 
that senses light intensity and temperature. It is compatible with any Z-Wave controller, 
and it supports protected mode (Z-Wave network security mode) with AES-128 
encryption, which makes sending data securely. The Fibaro sensor is a battery-powered 
device with a battery life of two years designed to be mounted quickly and easily on 
any surface. The last feature is that Fibaro is made in the EU, which means that social 
and environmental issues are respected, and it is readily accessible on the market. 
(Motion Sensor, 2021). 
 

3.4 Raspberry Pi 
RPi 3B+ is the final revision of the RPi 3, and it has the features that are suitable and 
needed in the framework, namely the low power consumption, the small size, 
accessibility on the market, and the low price. Raspberry Pi 3 B+ has enough technical 
features for the study, namely the good networking support and, at the same time, a fast 
process (Raspberry Pi beginner's guide 4th edition, 2022). Raspberry Pi 3 B+ is the 
connector between the senor and the AWS. It uses an operating system called 
openHABian. 

3.5 Z-Wave stick  
Z-Wave stick is a USB stick based that works with any platform, and it uses Z-Wave 
technology which is the most suitable technology for smart home automation. Z-Wave 
is secure because it uses the same encryption as online banking, and it is experienced 
where there are 100 million products worldwide using it (Learn - Z-Wave, 2022). 
 
 Z-Wave utilizes a mesh network architecture. Every (non-battery) device installed in 
the network acts as a signal repeater. As a result, the network becomes stronger as more 
devices are added to the home. While Z-Wave signals can easily pass through most 
walls, floors, and ceilings, devices can intelligently route themselves around 
obstructions to achieve seamless, robust, whole-home coverage. It has a range of 100 
meters or 328 feet in the open air; building materials reduce that range. It is 
recommended for maximum efficiency to have a Z-Wave device approximately every 
30 feet or closer (Learn - Z-Wave, 2022). 
A detailed description of the Z-Wave stick and configuration process is provided in 
Appendix 2. 
   

3.6 MQTT 
MQTT is a publish/subscribe message transport protocol for clients and servers. It is 
light, open, and essential, and it is supposed to be simple to use. These qualities make 
it excellent for application in various circumstances, including confined environments 
where a minimal code footprint is required or limited network bandwidth. This 
communication is in the context of Machine to Machine and the Internet of Things 
(Andrew Banks, 2014). 
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3.7 AWS IoT Core 
The AWS IoT Core is the AWS window for the outside world where the initial 
connection with IoT devices is configured. IoT devices can be connected securely to 
AWS IoT Core and it can be used even if these devices are offline. The AWS IoT Core 
provides the possibility to use a MQTT test client and a rule engine. The MQTT test 
client aids in verifying that data is received by AWS. Data can automatically be sent to 
Amazon Timestream by the rule engine as soon as it is received by the IoT core(AWS 
IoT Core features 2022). Each client connection is limited to 100 inbound and outbound 
publish requests per second by AWS IoT Core. Requests to publish that exceed the limit 
are discarded (AWS IoT Core endpoints and quotas - AWS General Reference, 2022). 
  

3.8 Amazon Timestream  
 Amazon Timestream is fast, scalable, and serverless. Amazon Timestream is used for 
IoT and operational applications to store and analyze events faster than relational 
databases. Amazon Timestream saves time and money by keeping recent data in 
memory and moving older data to a cost optimized storage tier depending on user 
defined criteria. Amazon Timestream's purpose built query engine offers access to 
recent and historical data without specifying whether it's in memory or the cost-
optimized tier. Amazon Timestream's built-in time series analytics tools can detect 
trends and patterns in data in near real time because it's serverless and scales 
dynamically to adapt capacity and performance. The underlying infrastructure is 
managed. .(Amazon Timestream 2022) 

3.9 Grafana   
Grafana is an all inclusive observability stack that makes it possible to monitor and 
analyze metrics, logs, and traces. This is made possible with the assistance of the 
software. Regardless of the location at which the data is stored, it is possible to query 
the data, visualize the data, set up alerts based on the data, and understand the data. It 
is helpful in the process of creating visually appealing dashboards, exploring those 
dashboards, and sharing those dashboards with others. Grafana provides the possibility 
to obtain data from the data source in intervals that are measured in milliseconds. 
(Amazon Managed Grafana, 2022) 
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4 Results 

This chapter addresses the research question by analyzing the gathered data from the 
selection components, implementation process, and verification tests.  

4.1 The result of the design and implementation 
The choice of the hardware components used in the framework shown in figure 3 was 
not random but was made based on specific features in order to overcome the challenges 
facing the use of DT, which standardization regarding design and implementation. 
These features are low price, accessibility on the market, and popularity where the 
components have an extensive community. 
 
The configuration process of the framework, shown in Figure 3, done in chapter 2.2, 
lead to dividing the implementation process into four stages. These stages, in turn, are 
divided into the following subtitles "sensor and the openHAB," "openHAB and AWS 
IoT Core," " AWS IoT Core and the Amazon Timestream," and ” Amazon Timestream 
and Grafana." These stages are arranged according to the framework in Figure 3.  
 
Figure 6 shows the classroom, where the sensors are placed at different locations when 
the iterations and verification tests have been conducted. The sensors are marked with 
a green circle. 

 
Figure 6 shows the placement of the sensors in the classroom in JTH. 

 

4.1.1 Sensor and openHAB 

Figure 7 demonstrates the result of integrating the sensor with openHAB, where 
environmental data is collected by the sensor and transmitted to openHAB using Z-
Wave technology. The sensor is a multi sensor that can sense both light intensity and 
temperature. The primary purpose of the current stage is to collect the environmental 
data using the sensor and visualize it locally in openHAB. 
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Figure 7 shows the collected data in openHAB dashboard. 
 

4.1.2 OpenHAB and AWS IoT Core.  

In this stage configured AWS IoT Core where it is connected with openHAB to ensure 
the environmental collected data is received in the AWS IoT Core with an ineffective 
latency. Figure 8 and 9 below shows the data collected from the sensors in openHAB 
and the AWS IoT core. Figure 8 below depicts sensor data displayed in the openHAB 
log view and when it was received in openHAB. Light intensity value was received at 
the time of 2022/5/27 11:57:33.605 and with the value of 151 Lux where Lux is a 
measurement unit of light intensity. It is crucial that the measured value retains its value 
and datatype when delivered to AWS IoT Core.  
 

 
Figure 8 shows collected data in the openHAB logger. 

 
The MQTT test client is used to keep track of the MQTT messages passing through 
AWS in the Frankfurt region. Light intensity data was received on 2022/5/27 at 
11:57:33, and with a value of 151 Lux, we can see it at the bottom of the AWS IoT 
Core, as shown in figure 9. At this point, it is essential to ensure that the data received 
by the AWS IoT Core is identical to the data initially transmitted by the sensors.   
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 Figure 9 shows light intensity in the MQTT test client in the AWS IoT Core. 
 

 
The MQTT test client was utilized to monitor MQTT messages traversing AWS in the 
Stockholm region. Figure 10 depicts temperature data received on 2022/04/12 at 
13:06:30 at the bottom of the AWS IoT Core. 
 

 
Figure 10 shows the temperature in the MQTT test client in the AWS IoT Core 

Stockholm region. 
 

4.1.3 AWS IoT Core and the Timestream 

In this phase, the connection between AWS IoT Core and Amazon Timestream is 
configured, and the collected data is then sent to Amazon Timestream for storage. 
Figures 11, 12, and 13 depict the outcome of integrating AWS IoT Core with Amazon 
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Timestream, in which environmental data was transmitted to Amazon Timestream 
throughout AWS IoT Core. Figure 11 depicts sensor data displayed in the openHAB 
log view when it was received. Light intensity from sensor 1 and sensor 2 was received 
on 2022/5/27 at 10:53.11.908 and 2022/5/27 at 10:53.11.896 in the Swedish time zone. 
The value is 96 Lux, which is based on a sensor's reading of light intensity. It is essential 
that the measured value maintains its value and datatype when sent to Amazon 
Timestream. 
 

 
Figure 11 shows light intensity in the openHAB logger 

 
 
Figure 12 below shows the data queried from Amazon Timestream. Where in the first 
row, the data matches the same time and same value, but the Timestream displays the 
UTC time zone. The data in the Amazon Timestream database corresponds to the data 
logged by the openHAB data logger in figure 11. 
 

 
Figure 12 AWS Timestream queried data. 

 
 
The Ingestion latency p95 value represents the longest time it takes for 95 percent of 
the data to be inserted into the database in a time span. Figure 13 depicts a chart of 
ingestion latency p95 with one minute per value period. At 2022/5/27 8:53 UTC, the 
ingestion latency p95 value is 60 milliseconds, as depicted in Figure 13 below. 

 
 

Figure 13 shows the Ingestion latency p95 in the Timestream. 
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4.1.4 Timestream and Grafana 

The configuration process concludes with the configuration of the connection between 
Timestream and Grafana. At this stage, it is essential that Grafana visualize the 
collected data in real time, which means that Grafana will display a chart that is as 
identical to the openHAB chart as possible. Figure 14 demonstrates a User Interface 
(UI) visualization of the collected data locally in the openHAB. This figure shows how 
the light intensity value changes over time. The horizontal axis depicts the time in hours 
and minutes, while the vertical axis depicts light intensity. Collectively, they resemble 
a chart of light intensity over time in hours and minutes. The data in the chart below is 
updated as soon as the openHAB receives the data from the sensors.

 
 

Figure 14 demonstrates the change of light intensity in openHAB.               
 
 
 
Figure 15 is a UI visualization in Grafana of the same data shown in Figure 14. The 
horizontal axis depicts the time in hours and minutes, while the vertical axis depicts 
light intensity. Collectively, they resemble a chart of light intensity over time in hours 
and minutes. Comparing Figure 14 and Figure 15 shows how they are comparable and 
similar, which means the collected data has been transmitted from the sensor via RPi, 
AWS IoT Core, and Timestream to Grafana without modification or delay. 
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Fig 15 Grafana line chart. 

4.2 Results analysis 
With the use of dynamic analysis, the produced and developed artifact was exposed to 
iteration and testing. This is accomplished by iterating the choice of components and 
simulating the intended scenarios by conducting multiple tests, as stated in section 4.1, 
at various stages within a suitable environment. The hardware components were 
subjected to iteration to select the most suitable component for the framework, thereby 
achieving the framework's purpose. Each component's configuration was subjected to 
the same testing in order to identify any potential bugs and crashes that may occur 
during the implementation process. 
 
The components' configuration was one of the outcomes of the implementation process, 
and these configurations were divided into four configurations. The first component's 
configuration is the sensor's configuration. While the first iteration produced 
undesirable and unexpected outcomes, the second iteration provided a readable and 
accurate output date. Since the new settings where the sensor measures temperature and 
light intensity 75 times, every minute does not affect the precision of each measurement 
but rather the rate at which data is transmitted to the RPi, the validity of the data 
measurements is unaffected. 
 
The second outcome of the process is the RPi configuration, which is the entire 
framework's connector and processor. Due to the inability of the RPi to withstand the 
high pressure caused by the high data transmission frequency, the first and second 
iterations produced undesirable outcomes. The third iteration of the RPi configuration 
provided readable and accurate behavior and outcomes. The data transmission 
frequency in the third iteration does not affect the accuracy of the collected data because 
the data is sent to the AWS as soon as the data collected is changed. 
 
The third result of the process is the configuration of the AWS IoT Core, which allows 
users to be connected to various regions where data is managed, and operations are 
running depending on the user’s geographical position. The Stockholm region of AWS 
did not support Amazon Times during the first iteration of the framework, which posed 
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an unexpected challenge. To solve the problem, a second iteration was conducted in 
which a Frankfurt region was chosen, but all configurations were remade because the 
Stockholm and Frankfurt regions are entirely distinct. 
In the second iteration, another unpredicted difficulty arose when the collected data 
value lost its decimal when the value contained decimals. The problem was solved in 
the third iteration by creating a new table in the database and sending the first value 
with non-changing decimals regardless of whether the value contains decimals. 
 
The Grafana visualization was set up and used for its intended purpose as the fourth 
outcome of this procedure. In the first iteration of Grafana’s configuration, the results 
were not updated as soon as data was updated in the Amazon Timestream, which led to 
inaccurate visualization. During the second iteration, Grafana creates a line chart as 
soon as it receives the data. Each time Grafana requests new data in 100 millisecond 
intervals. Grafana appears to be a good match for the openHAB visualization tool where 
the data is locally visualized. Figures 14 and 15 show the symmetry between the 
visualization of the same data in openHAB and Grafana. 

4.3 Analysis research question  

The purpose of analyzing the collected data is to answer the study's research question: 
How to create a DT solution utilizing AWS to establish interaction and convergence 
between the physical environment in a classroom and the virtual environment? The 
framework's design and implementation become more accurate by employing the DSR 
methodology and iteratively developing and improving an artifact throughout multiple 
phases. The iterations of the artifact mentioned in chapter 2.2 are divided into different 
iterations depending on the component's selection and configuration. The iterations of 
selecting the framework's components led to the RPi 3 model B+ and Fibaro sensor 
because they have the features needed to create and design the framework. RPi's 
configuration iterations concluded that the suitable data transmission frequency 
between the environmental monitoring sensor and the RPi is 75 times per minute and 
between the RPi and the AWS as soon as the collected data changes, up to a maximum 
of 60 times per minute. These iterations led to a connection between the RPi and AWS, 
where the data is received in AWS IoT Core with no data loss and with latency 800 
milliseconds from the time it was received in openHAB. The connection between the 
RPi and AWS IoT Core enabled the connection between IoT Core and Timestream 
database where the data is saved with no data loss and the latency of 1110 milliseconds 
from the time received in openHAB. Timestream enables the connection to Grafana 
where all the data in collected by the sensors and stored in Timestream can be 
visualized.      
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5 Discussion 
This chapter discusses the results of the research and further discusses the method used 
in the study. 

5.1 Result in discussion 
The purpose of the thesis is to conduct research in creating a framework for DT 
solutions utilizing AWS and IoT technology, and the goal of this research is to be 
presented in the form of the thesis. 
 
In conjunction with the production of the framework, the configuration of the 
framework initially enables the collection of environmental data, which is followed by 
the transmission of the collected data to AWS, where it can be saved and managed in 
real time. 
 
Configuring the framework enables the collection of environmental data and its 
transmission to AWS for real time storage and management. This process occurs 
simultaneously with the creation of the framework. 
As a result, having the ability to measure and manage the environmental data required 
to accomplish the interaction and convergence of the physical and virtual environments 
is essential. 

5.1.1 Research question 

A research question has been posed to guide the implementation process toward the 
study's end goal in order to fulfill the thesis's purpose. The steps of creation and 
implementation, which were designed to work together, were intended to make it easier 
to find answers to the research question. 

According to the research question, the answer to the research question can be divided 
into two parts, the first about the framework's design and the second about its 
implementation. Various factors must be considered when determining the optimal 
framework's components to achieve the framework's purpose. These shared factors 
include low cost, broad accessibility, and a large community. As regards determining 
the optimal components' configuration of the framework, there are a different few factor 
that need to be taken into consideration. The first factor is the time of monitoring of the 
data to determine if the data has been managed in real time. There are two separate 
variations for this process, these ones being if the data has been collected by the sensor 
in the real time or if it is transmitted from the RPi to the AWS IoT Core in the real time. 
The optimal configurations were determined to be a collection data rate is 75 times per 
minute and a transmission data rate of once the collected data changes and up to a 
maximum of 60 times per minute. A connection between the RPi and AWS has been 
established, with no data loss and a latency of 800 milliseconds from when openHAB 
receives the data. Since the RPi and AWS IoT Core were connected, data from the IoT 
Core and Timestream database could be saved without any data loss and with a latency 
of 1110 milliseconds from the time it was received in openHAB. Data collected by 
sensors and stored in Timestream can be viewed in Grafana thanks to the Timestream 
to Grafana connection. 
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5.2 Discussion of method and implementation  
Regarding the method, its strength was that it provided a course of action that suited 
and accommodated the thesis purpose by not only allowing for the development of the 
artifact or configurations in this case, but also for employing an iterative approach that 
was conducive to answering the research question. 
 
In addition, this allowed for flexibility throughout the process, which made it possible 
to deviate from the initial plan when problems arose. Changing to something more 
appropriate and practicable given the diminishing time frame. The inclusion of the 
demonstration or testing phase within DSR provided the opportunity to examine 
whether the design matched the intent by examining its functionality in conjunction 
with potential edge cases, and then, after determining whether it corresponded to the 
desired solution or not, to communicate any necessary changes.  
Consequently, the study has been implemented effectively and accomplished its 
intended aim. As a result, the research question can be answered due to the 
implementation of the approach. By adopting a similar structure of design, testing, and 
evaluation, the data analysis technique of choice in dynamic analysis aligned 
appropriately with the DSR procedure. 
 
To establish the validity of the study, all produced data was compared with what can be 
perceived and re-created to validate its authenticity and to ensure that no unknown 
variables affecting the outcome remained. 
  
In order to ensure the validity of the measurement tool, it has been compared to a similar 
model and the selection was depending on the knowledge gained from the search done 
in the research’s start. However, it would have been beneficial to compare its 
performance to that of another model, possibly of a different brand. Similarly, for the 
purpose of ensuring the reliability factor, dependable and reproducible data sets were 
sought. In addition, documentation on the project's setup and implementation, as well 
as its configurations. 
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6 Conclusions and further research 

This chapter summarizes the study's findings and makes suggestions for those who 
desire to perform more research on this topic. 

6.1 Conclusions 
The problem statement of this thesis is the lack of information about how to create a 
framework based on IoT and DT solutions utilizing AWS, with the goal of achieving 
the optimal interaction and convergence between the physical and virtual environments 
in a classroom.  
 
In conclusion, the study has contributed to more knowledge in creating the IoT based 
DT framework for environmental monitoring in the indoor environment. The gained 
knowledge about configurations of different components in the framework would 
optimize the interaction and convergence between the physical and virtual 
environments in a given space. In this study, the configurations were concluded the data 
collection rate and data transmission rate.  
 

6.1.1 Practical implications 

According to (Erol et al., 2020; MarketsandMarkets, 2020; Marmolejo-Saucedo, 2020) 
mentioned in chapters 1.2 and 3.1, the fact that IoT and DT technologies have a 
promising and bright future in the field of smart cities indicates that their use will rise 
in the future in cloud computing.  
 
Specifically, individuals, businesses, and institutions interested in IoT, and DT’s 
solutions and cloud computing may be able to use the results of this study to learn more 
about designing and implementing a framework using these technologies. 
 
Furthermore, the practical implications for others who wish to accomplish anything like 
this thesis are substantial. Using the framework the study built and executed, one may 
add additional sensors for environmental monitoring, such as air quality or 
overcrowding, and send the collected data to a monitor that displays the data to 
determine whether the area has a healthy environment or is overcrowded. Thus, a safer 
environment is maintained throughout the pandemic. 
 
There are numerous further practical implications, but they can also be interpreted as 
scientific implications, discussed in the next chapter. 
 

6.1.2 Scientific implication 

Regarding scientific implications, this thesis can have some implications. For instance, 
the output data from the framework could be used to demonstrate how the light intensity 
changes throughout the day so that the placement and number of lamps can be 
controlled and managed to save resources in a specific space, such as a classroom. 
 
In addition, the framework can be used to monitor temperature fluctuations throughout 
the day. The heating and air conditioning can be adjusted based on the output readings 
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from the framework. Thus, it is possible to determine when it is necessary to increase 
the heating or decrease the air conditioning in a specific space to save energy. 
 
Lastly, since the framework allows for the addition of different sensors, sensors for air 
quality and humidity can be added. Since the environmental factor has a significant 
impact, the results can be used to examine the well being of individuals. People may be 
students, employees, or store customers. 
 

6.2 Further research 
This chapter provides examples of research and study questions that could be posed to 
enhance the framework's configuration and functionality. Time and scope constraints 
prevented the authors from responding and implementing them. 
 

6.2.1 The environmental monitoring sensors’ placement   

The environmental sensor is the essential component in the framework where all 
environmental data is collected. Since this study is not about how these data are accurate 
rather about how accurate the collection and transmission are in a real-time. 
The Fibaro sensor used in the study to collect the environmental data has a specific 
configuration when it comes to placement to cover the biggest area of a place. Authors 
get sometimes false temperature and light readings because the sensor was out of range. 
 
In the beginning, a lot of time was spent trying to find the best placement for the sensor 
using the detection feature built in the sensor to reduce the irrelevant temperature and 
light readings. The best way to reduce outside temperature and light readings is to 
position two sensors in opposing locations to cover the entire area. 
 
However, this could be an area that would benefit from further research. Consequently, 
the following research question could be posed: 

- How should an environmental monitoring sensor be positioned geometrically in a 
classroom to optimize interaction and convergence between the physical and virtual 
environments? 

6.2.2 Utilizing the using of the AWS 

The AWS has many properties that could be used to further improve the creation of the 
framework based IoT and DT technologies. For example, the properties of machine 
learning (ML) can be used in many ways to enhance the customers' experiences, 
improve productivity, and optimize the data management process.   
The use of machine learning in an environmental monitoring system can improve life 
in society by highlighting the connection between the environment and health. 
Transforming environmental monitoring data into information and disseminating 
actionable insights to the community promptly is essential for informing the public 
about the state of the environment. 
 
However, this could be an area that would benefit from further research. Consequently, 
the following research question could be posed: 
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- How can machine learning be used to optimize the control and management of 
resources in a Smart Building's environmental monitoring system? 
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8 Appendices 

APPENDIX 1 
Preparing the RPi and the OpenHAB dashboard 
install OS (OpenHABian) 
            Requirements for installation: 

1. microSD card (4GB minimum, 8GB recommended.   
2. a computer with a microSD card drive. 
3. a monitor with an HDMI interface. 
4. an HDMI cable. 
5. a USB keyboard and mouse.  
6. A stable internet connection. 

    Guidelines for installation: 
1. Download the latest "openHABian" SD card image (image means a copy of 

OS). 
2. Write the image to the SD card using the Raspberry Pi Imager or the Etcher. 
3. Insert the SD card into your Raspberry Pi. 
4. Connect RPi to Ethernet if there is no Wi-Fi or configure Wi-Fi.  
5. Power on and wait approximately 15-45 minutes. 

When openHABian has been installed and configured a welcome screen is shown as 
in the Figure below. 

 
 

configure the OpenHAB dashboard  
Once the RPi is ready OpenHAB dashboard configuration can be completed by 
following the steps below. 

1. Connect the computer to the same Wi-Fi the RPi is connected 

2. Access the openHAB dashboard via http://openhabian:8080 or  
http://the-computer-IP:8080.   
3. create an account to manage the openHAB dashboard. 

4. choose the language, region, location, and time zone. 

5. install the necessary add-ons in the openHAB dashboard. 
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When all the configuration steps have been completed, a welcome screen is shown 

as in the figure below.  

 
 

APPENDIX 2   
 Configuration Z-Wave stick and Motion sensor 
 
Configuration of the Z-Wave stick  

Z-Wave stick acts as a controller for the automation system in the indoor 
environment, and it keeps environmental monitoring sensors connected to the RPi. It 
will be used in the framework because it provides improved battery life, range, and 
bandwidth. Up to 232 devices supported by z-wave technology can be connected to 
it, and it is straightforward to pair new devices to the Z-Wave stick (Z-Stick Gen5+, 
2021). It can be configured by following the steps below.   

1. Installing the necessary bindings like z-wave binding.  
2. Switch on the Z-Wave stick using the action button. 
3. Connect the Z-Wave stick to the RPi. 
4. Add devices "sensors" to the Z-Wave stick by following these steps:  

4.1 remove the Z-Wave stick from the RPi. 
4.2 Tap the action button on the Z-Wave stick twice quickly. 
4.3 Now the Z-Wave stick blinks rapidly to indicate the Z-Wave is ready to 

pair. 
4.4 Switch on the Sensor desired to connect. 
4.5 If the pairing is done LED on the Z -Wave stick becomes blue solid for 2 

seconds. 
4.6 If the pairing is failed LED on the Z-Wave stick becomes red solid for 2 

seconds. 
4.7 Once all paring is done, tap the Z-Sticks button once, and the LED should 

stop blinking. 
4.8 Repeat steps 4.2 – 4.6 if more devices are desired to be connected. 

5. Connect the Z-Wave stick again to the RPi. 

The figure below shows the buttons of the Z-Wave stick using in the configuration 
and connection process. 
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The table below shows a detailed description of the different colors and functions of the Z-
Wave stick and the buttons needed to complete the pairing process. 

 

 

 

 

 

 

 

 

 

 

 

 

Configuration of the environmental Sensor 

The connection between the Sensor and RPi can be established in two phases. 
The first phase is to connect the Sensor to the z-wave stick. The following steps guide 
establishing the Sensor's connection to the z-wave.  

1. Open the Sensor and remove the plastic strip to turn on the Sensor.  
2. Bring the Sensor directly within the range of the z-wave stick when it is unplugged 

into the RPi.  
3. Press once on the button on the front side of the stick (z-wave stick) till it blinks 

with blue light (learning modes).  
4. Place the stick near the Sensor and then press three times on the button on the 

backside of the Sensor till the Sensor is recognized.  
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5. Both the Sensor and the stick will blink to show connected. 

The figures below show how to start on the Fibaro sensor.  

  

The second phase is to configure the Sensor in the openHAB dashboard, and the guidelines 
for configuration are the following.  

1- Connect the stick by plugging it into the RPi. 
2- Open the notification in the inbox. 
3- Follow the link in the notification to the Sensor's feature interface. 
4- Choose the light intensity and temperature features. 
5- Link the chosen features with an item. 
6- Open the openHAB dashboard and connect the item to the user interface to show 
the measured environmental data. 
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APPENDIX 3 
Configuration the connection between RPi and AWS  
 
The connection between RPi and AWS consists of two distinct components. The first step is 
to register the device with AWS IoT Core, and the second is to run the Connection Kit using 
the security credentials.  
 
Registering the IoT device in the AWS IoT Core  
The IoT device in AWS IoT core can be configured by following the steps below. 

1. Select onboard a device on the "AWS	IoT/Connect	to	AWS	IoT"	page.	
2. Because the RPi in the thesis is running OpenHABian, which is a Linux distribution, 

you can use Linux as a platform. 
3. Since the OS of the device has Python and Git installed and a TCP connection to the 

public Internet on port 8883, python would be the excellent choice between to choose 
as the AWS IoT Device Software Development Kit. 

4. Name the device and then download the connection kit. 
Run the Connection Kit 
To run the connection kit, open the terminal in the directory the Connection Kit was installed 
in and do the following steps below. 
 

1. The following command will unzip the device's connection kit. 

unzip connect_device_package.zip 

 
 

2.  The following command will grant access to the executable file. 

chmod +x start.sh 

 

3. Run the start script below. Messages from the local device will appear in the IoT core 

user interface. 

./start.sh 

 

APPENDIX 4 
A Configuration the connection between AWS IoT core and Amazon Timestream. 
 
The connection between AWS IoT Core and Amazon Timestream consists of three distinct 
components. The first step is to register the database, the second is to create a database table 
in Amazon Timestream, and the third is to configure AWS IoT Core rule to send the data to 
the database table. 
 
Creating a database in the Timestream. 
 The Amazon Timestream database is configured by following the steps below. 

1. On the "Amazon Timestream/ Databases" page, click Create a Database. 
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2. For the configuration, choose a standard database. 

3. Give the database a name. 

4. Assign a Key Management Service (KMS) key to the database. 

5. Select the Create Database option. 

The user interface of create a database page below. 

 
 
 
Creating a database table in the Amazon Timestream. 
The Amazon Timestream database table can be configured by following the steps below. 

1. Click Create a Table on the "Amazon Timestream/ Tables" page. 

2. Choose the database in which the table will be created. 

3. Give the table a name. 

4. Determine how long data will be stored in memory before being transferred to the 

magnetic store. 
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5. Define the amount of time data will be stored in the magnetic store before being 

deleted. 

6. Choose the option to create a table. 

 
 
Creating a IoT Core rule. 
The IoT core rule can be configured by following the steps below. 
 
7. On the "AWS IoT/ rules" page, click Create. 

8. Assign a name to the rule. 

9. Locate the SQL statement's measure values. 

10. Create a Timestream action method. 

11. Make a dimension out of the sensor id. 

12. Make your rule. 
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APPENDIX 5  
A Configuration the connection between Amazon Timestream and Grafana. 
Grafana is the final component of the framework, and it serves as the data visualization tool. 
A connection must be established between Grafana and Amazon Timestream in order to 
retrieve data. 
The following steps guide the process of implementation and connection: 

1. Connect the Grafana to the AWS by providing the credentials details as shown in the 

figure below  

 

 
2. When the connection is successful it is time to select the database, table and measure 

values. 

3. In the Grafana Dashboard a line graph can be selected to visualize temperature values. 

4. When it is done the following will be showed 
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