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Sammanfattning

Utvecklingen av mer komplexa produkter har ökat beroendet av virtuella/digitala
modeller och ökat betydelsen av simuleringar för att validera en produkt inför
produktion. Ett stort beroende av digitala modeller och simulering tillsammans
med den individuella anpassningen och kontinuerliga kravförändringar leder till
ett stort antal iterationer i varje steg i produktutvecklingsprocessen. Forskning-
en som presenteras i denna avhandling studerar denna typ av produkter som har
multidisciplinära, mycket iterativa och simuleringsdrivna designprocesser. Det har
visat sig att dessa tekniska produkter på hög nivå, som vanligtvis tillhandahålls av
underleverantörer, vanligtvis har en lång ledtid för utveckling. Litteraturstudien
pekar på flera forskningsspår, exempelvis designautomation och datadriven de-
sign, eventuellt med stöd. Efter att ha studerat fördelarna och nackdelarna med
varje spår, väljs det datadrivna tillvägagångssättet och studeras genom två fall-
studier som leder till att två stödjande verktyg tas fram. De förväntas förbättra
utvecklingsledtiden i tillhörande designprocesser. Feature extraktion i CAD som
ett sätt att underlätta metamodellering föreslås som det första verktyget. Detta
stöd använder medial axis för att hitta korrelerade features som kan användas i
regressionsmodeller. När det gäller det andra stödjande verktyget används ett au-
tomatiserat CAD-skript för att producera ett stort bibliotek med bilder som är
associerade olika designvarianter. Dynamisk relaxation används för att märka var-
je variant med dess finita elementlösning. Slutligen används detta bibliotek för
att träna ett konvolutionerande neuralt nätverk som kartlägger skärmdumpar av
CAD som indata till finita elementfältsvar som utdata. Båda stödverktygen kan
användas för att skapa modeller för förutsägelser i realtid i de tidiga konceptuel-
la faserna av produktutvecklingsprocessen för att utforska designrymden snabbare
och minska ledtid och kostnader.

x

Abstract

The development of more complex products has increased dependency on vir-
tual/digital models and emphasized the role of simulations as a means of validation
before production. This level of dependency on digital models and simulation to-
gether with the customization level and continuous requirement change leads to
a large number of iterations in each stage of the product development process.
This research, studies such group of products that have multidisciplinary, highly
iterative, and simulation-driven design processes. It is shown that these high-level
technical products, which are commonly outsourced to suppliers, commonly suf-
fer from a long development lead time. The literature points to several research
tracks including design automation and data-driven design with possible support.
After studying the advantages and disadvantages of each track, a data-driven ap-
proach is chosen and studied through two case studies leading to two supporting
tools that are expected to improve the development lead time in associated design
processes. Feature extraction in CAD as a way to facilitate metamodeling is pro-
posed as the first solution. This support uses the concept of the medial axis to
find highly correlated features that can be used in regression models. As for the
second supporting tool, an automated CAD script is used to produce a library of
images associated with design variants. Dynamic relaxation is used to label each
variant with its finite element solution output. Finally, the library is used to train
a convolutions neural network that maps screenshots of CAD as input to finite
element field answers as output. Both supporting tools can be used to create real-
time prediction models in the early conceptual phases of the product development
process to explore design space faster and reduce lead time and cost.

xi
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Chapter 1

Introduction

The core aim of the product realization is either economic success or addressing a
need or a combination of both which is carried on by satisfying requirements like
quality, cost, sustainable goals, etc. Since designers are responsible for the techni-
cal and economic properties of a product, timely and efficient development results
in the commercial success of a product realization process. Therefore, designers
strive to improve the Product development (PD) procedure to achieve successful
products (Pahl & Beitz 2013). The complexity of the products, the competitive-
ness of the markets, and also the demands for more variety in shorter times have
forced companies to outsource the design and manufacturing of their complete
systems or components to suppliers (Liker et al. 1995). Nevertheless, development
outsourcing forces communication with suppliers to be focused on the fulfillment
of certain functional requirements rather than the manufacture of a design solu-
tion (Sutinen et al. 2004). Over the past years, some high-level technical products
have emerged with a transdisciplinary design process that are following strict re-
quirements from various stakeholders. Companies with such products work very
closely with their customers to satisfy requirement specifications when developing
new products. Their products are of high precision and complex and subsequently
depended on digital engineering tools. For these products, virtual models and sim-
ulations are primary means of validation before production for reducing physical
prototyping costs. As a result of this reliance on digital models and simulations,
these products often have a highly iterative design process that leads them to suffer
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organizations make the design exacerbates iterative nature which adds up to the
development lead time. Computer simulations exist from the early phase of the
request for quotation (RFQ) phase and play a major role in determining the devel-
oping path and final state of these products. Literature confirms that iterations are
historically considered a major source of increased PD lead time (Eppinger et al.
1994). Additionally, for these products, it can be said that most of the developing
time is spent on iterative manual work of verifying design changes.

1.1 Background

Product development is a challenging and costly part of product realization. It
takes a lot of time to develop a product and a lot of developing people on board.
Modeling PD stages and interactions between them have been a subject of studies
for decades. A generic PD process with a handful of methods and guidelines is
described in (Ulrich & Eppinger 1995) with six phases which are depicted in Figure
1.1.
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Tes�ng and
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Ramp Up

Figure 1.1: Generic PD process model by (Ulrich & Eppinger 1995)

Activities that need to be covered in each phase are elaborated in detail, at different
levels (Marketing, Design, Manufacturing, and other functions). Emphasizing the
generic nature of the exhibited process, the authors argue that each company needs
to adapt these steps based on the context of the company and the challenges of the
projects. Also, the process might not follow such a sequential fashion, as many
factors could cause overlapping between phases, step-backs, or iterate activities.
Pahl and Beitz define the PD process as a general problem-solving process, or as
a general decision-making process (Pahl & Beitz 1984). They propose a practical
and procedural Product development process (PDP) as illustrated in Figure 1.2,
and mentioned that any process model has to be considered as operational guide-
lines for activities based on the patterns of technical PD and the logic of stepwise
problem-solving.

One can identify several other development process models, for instance (Hubka
& Eder 1988), (VDI 1993), (Stauffer & Ullman 1991), and (Suh 1998) and each of
them is established to describe the PD process in one way. These process models
can give intuition to the flow of work or activities, but they can also conceal one
aspect or part of the work. For instance, even though the early linear stage-gate
methods (Cooper 1990) have received great appreciation in terms of saving devel-
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Figure 1.2: Generic PD process model by (Pahl & Beitz 1984)

opment time, at the same time, many failures are also reported by various indus-
tries. Some of the process models are criticized for being too rigid to handle, too
planned to be innovative or dynamic, too controlling, and bureaucratic, with too
much nonvalue-added work (Cooper 2014). Choosing the best process model for
a design process is not trivial and needs attention to multiple factors. The degree
of formalism is one of the factors to consider when choosing from a wide range
of processes. A structured design method increases design transparency and helps
achieve complex objectives by preventing unnecessary iterations. On the other
hand, too structured methods reduce the clarity as well as creativity and make it
prone to longer development lead time. A simplified process leaves tasks for inter-
pretation which can cause chaos when the objective involves several stakeholders.
Controlling the level of formalism (granularity) of the design process models, is
one way to adjust model transparency and traceability and consequently its effi-
ciency. Examples of this can be found in design automation (Heikkinen 2021) and
engineering knowledge management (Johansson et al. 2018).

PD process models are categorized differently in the literature. Wynn et al de-
scribe four main groups of models (Wynn & Clarkson 2018) where each group
can range from a detailed micro-level model with a focus on individual process
steps to a macro-level with a focus on project structure. The first group (Manage-
ment/Operation) is on the conceptual level and describes overall recommended
design strategies. The second group (Procedural) is more systematic and supports
the execution of design steps. The design process models in this research will be
of this type. The third set of models (Analytical) is more focused on providing
procedures or solving problems encountered during the design and development
process and the fourth group of models (Abstract) focuses more on describing the
interaction processes between different stakeholders in the design process. Com-
mon ground for all PD models is to have iterations of analysis, synthesis, and
evaluation steps as their core.
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1.1.1 Iterative design

Intuitively and historically in PD, the creation of design follows its physical eval-
uation and then modification and validation iteratively until th,e desired require-
ments are met (Vellathottam et al. 1997). Almost any model for PD is following an
iterative cycle of designing, building, and testing. This traditional Design-Build-
Test cycles are performed at different development levels (system, subsystem, com-
ponent) at each stage of the product realization process (concept, engineering, pi-
lot production). In the early conceptual phases and late pre-production level, the
iterations are at the higher system level but in the middle engineering phases, they
are performed at the lower component level. As illustrated in Figure 1.3 the process
which is referred to as prototyping is a basic building block of any development
activity (Wheelwright & Clark 1992).
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Figure 1.3: The traditional path of Design-Build-Test cycles (Wheelwright & Clark 1992)

Repeating certain tasks to improve the design is one way of defining the iteration
in the design process. Some authors defined iteration as the process by which a
solution is approached step by step (Pahl & Beitz 1984). And others as repeating
an already completed task to incorporate new information (Ulrich & Eppinger
1995). There is another definition that is less concerned with the repetition of a
task and more focused on the thought process that justifies the need to perform
that activity, named the heuristic reasoning process. Other researchers consider
iterations as cognitive cycles for designers to gather knowledge, process them, make
revisions and execute them with the goal of improvement (Adams & Atman 1999).
Thus, the definition of iteration ranges from simple repetition to a pattern of a
designer’s behavior. This classification is expanded to three type of iteration called,
rework, design, and behavior, based on design process attributes such as activity,
abstraction level, and scope (Costa & Sobek 2003).

Iterations are an inherent and unavoidable characteristic of any development pro-
cess (Pahl & Beitz 1984), (Ullman 1992). This is because breaking down a problem
and solving it in iterative and smaller steps is a good way of attacking complex and
intertwined design problems. The more iterations need to be performed, the more
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duration and cost the project will have. On the other side, with iteration comes
accuracy and highly iterative design processes are favored for high precision and
complex products. The design process, in general, is a form of problem-solving
and all forms of problem-solving follow a similar cycle of activities. General prob-
lem solving can include, Problem definition, Design value system, Synthesis of
system, Analysis of system, Choosing the system, and Implementation planning
(Bellgran & Säfsten 2010). Each phase in the model depends on the outcome from
the previous phase. Several of the phases are strongly connected and it is necessary
to iterate back and forth between the phases.

1.1.2 Simulation-driven design

The goal of simulations is to validate a concept idea or design. Simulations are
usually considered where observing or testing the real-world experiment is expen-
sive or impossible, and where analytical solutions are too complicated, or costly to
be validated (Maria 1997). Many simulation analysis methods can be used in the
design phase to improve design variants and respond to changing requirements.
Simulations utilize models (defined as simpler representations of systems) to study
the behavior and performance of a system, mainly to reduce the chances of failure
in meeting requirements. More detailed models are more effective in addressing
the occurrence and consequence of unplanned iterations. However, due to the
simplified nature of models, some researchers argue that no modeling framework
or simulation model can capture the full complexity of iterations in PD (Wynn
et al. 2007).

Simulation-driven design (SDD) (Sellgren 1999) has been defined as a design pro-
cess where the majority of the detailed design is performed with computer-based
product models. SDD uses studies on the behavior and performance of a system as
the primary means of design evaluation and verification in all major phases of the
PD process, (Shephard et al. 2004). This evaluation is concerning various prop-
erties of a system for example mechanical, electrical, chemical, software, control
engineering, etc. SSD aims to move simulation technology from the middle and
the late cycles of a design process to the very front cycles and in this way, lower the
time it takes for companies to develop products. Introducing simulation analysis
very early in the design process (Roth 1999) is called front loading which prevents
the back and forth between stages and saves a lot of time in PD but it also makes
the process highly dependent on these simulations. Today, the role of simula-
tion design has evolved beyond just validating Computer-aided Design (CAD)
models (Lockwood 2009). Just as it was speculated by Bossak nearly two decades
ago, SDD has evolved into a shared, highly flexible, information-based, respon-

5



1.1.1 Iterative design

Intuitively and historically in PD, the creation of design follows its physical eval-
uation and then modification and validation iteratively until th,e desired require-
ments are met (Vellathottam et al. 1997). Almost any model for PD is following an
iterative cycle of designing, building, and testing. This traditional Design-Build-
Test cycles are performed at different development levels (system, subsystem, com-
ponent) at each stage of the product realization process (concept, engineering, pi-
lot production). In the early conceptual phases and late pre-production level, the
iterations are at the higher system level but in the middle engineering phases, they
are performed at the lower component level. As illustrated in Figure 1.3 the process
which is referred to as prototyping is a basic building block of any development
activity (Wheelwright & Clark 1992).

Systems

Sub-Systems

Components

Concept Engineering Pilot produc�on

Di
ffe

re
nt

 L
ev

el
s

Progression of Design-Build-Test cycles

Figure 1.3: The traditional path of Design-Build-Test cycles (Wheelwright & Clark 1992)

Repeating certain tasks to improve the design is one way of defining the iteration
in the design process. Some authors defined iteration as the process by which a
solution is approached step by step (Pahl & Beitz 1984). And others as repeating
an already completed task to incorporate new information (Ulrich & Eppinger
1995). There is another definition that is less concerned with the repetition of a
task and more focused on the thought process that justifies the need to perform
that activity, named the heuristic reasoning process. Other researchers consider
iterations as cognitive cycles for designers to gather knowledge, process them, make
revisions and execute them with the goal of improvement (Adams & Atman 1999).
Thus, the definition of iteration ranges from simple repetition to a pattern of a
designer’s behavior. This classification is expanded to three type of iteration called,
rework, design, and behavior, based on design process attributes such as activity,
abstraction level, and scope (Costa & Sobek 2003).

Iterations are an inherent and unavoidable characteristic of any development pro-
cess (Pahl & Beitz 1984), (Ullman 1992). This is because breaking down a problem
and solving it in iterative and smaller steps is a good way of attacking complex and
intertwined design problems. The more iterations need to be performed, the more

4

duration and cost the project will have. On the other side, with iteration comes
accuracy and highly iterative design processes are favored for high precision and
complex products. The design process, in general, is a form of problem-solving
and all forms of problem-solving follow a similar cycle of activities. General prob-
lem solving can include, Problem definition, Design value system, Synthesis of
system, Analysis of system, Choosing the system, and Implementation planning
(Bellgran & Säfsten 2010). Each phase in the model depends on the outcome from
the previous phase. Several of the phases are strongly connected and it is necessary
to iterate back and forth between the phases.

1.1.2 Simulation-driven design

The goal of simulations is to validate a concept idea or design. Simulations are
usually considered where observing or testing the real-world experiment is expen-
sive or impossible, and where analytical solutions are too complicated, or costly to
be validated (Maria 1997). Many simulation analysis methods can be used in the
design phase to improve design variants and respond to changing requirements.
Simulations utilize models (defined as simpler representations of systems) to study
the behavior and performance of a system, mainly to reduce the chances of failure
in meeting requirements. More detailed models are more effective in addressing
the occurrence and consequence of unplanned iterations. However, due to the
simplified nature of models, some researchers argue that no modeling framework
or simulation model can capture the full complexity of iterations in PD (Wynn
et al. 2007).

Simulation-driven design (SDD) (Sellgren 1999) has been defined as a design pro-
cess where the majority of the detailed design is performed with computer-based
product models. SDD uses studies on the behavior and performance of a system as
the primary means of design evaluation and verification in all major phases of the
PD process, (Shephard et al. 2004). This evaluation is concerning various prop-
erties of a system for example mechanical, electrical, chemical, software, control
engineering, etc. SSD aims to move simulation technology from the middle and
the late cycles of a design process to the very front cycles and in this way, lower the
time it takes for companies to develop products. Introducing simulation analysis
very early in the design process (Roth 1999) is called front loading which prevents
the back and forth between stages and saves a lot of time in PD but it also makes
the process highly dependent on these simulations. Today, the role of simula-
tion design has evolved beyond just validating Computer-aided Design (CAD)
models (Lockwood 2009). Just as it was speculated by Bossak nearly two decades
ago, SDD has evolved into a shared, highly flexible, information-based, respon-

5



sive design environment with plug-and-play interoperability across dispersed and
dissimilar environments (Bossak 1998). An integrated design environment such
as SDD can allow virtual prototyping and therefore increase manufacturability,
lower lifecycle costs, and improve the quality and performance of future products.

Simulations in PD have grown to be an umbrella for a diverse range of methods.
For instance, in the mechanical design field, computer-aided engineering (CAE)
was first introduced in 1980 by J. Lemon as a way to provide analytical information
in a timely manner in the PD process. But Lemon’s proposed concept was later
differentiated with CAE as a new concept and named Virtual prototyping (Kojima
2000). CAE today is a way to address the use of computer software to simulate
a physical phenomenon in which the application of software may include vali-
dation and optimization of a product or a process (Merkel & Schumacher 2003).
CAE analysis in commercial software commonly consists of three major steps: pre-
processing (creating a model by idealization), processing (physics-based system of
equation is solved), and postprocessing (the results are graphically presented to the
stakeholders for review and analysis or decision making). With advances in com-
puters and modeling techniques and the need for more focused products, many
commercial tools have been developed with a focus only on one of the mentioned
three steps. Strategic implementation of CAE analysis is vital for the success of the
product, meaning that it should be thoroughly and appropriately integrated into
the PD process (King et al. 2003).

1.2 Problem description

Iterations are considered a major source of increased development lead time (Ep-
pinger et al. 1994). Some researchers (Will 1991) suggest that a major decision on
the cost (85%) of a product is incurred directly due to decisions made before the
product design is released to manufacturing. Similarly, Osborne (Osborne 1993)
reported that iterations accounted for 13 to 70% of the total development effort
for nine projects. Other researchers (Ulrich & Pearson 1993) argue differently by
creating a methodology to evaluate the question “Does design determine 80%
of the manufacturing cost?”. They analyze a coffee maker’s total production cost
and conclude this percentage is lower than common belief, but it is still significant.
Aside from the exact percentage, iterations lead to a lot of manual work with CAE
and CAD that can take up a significant amount of total engineering man-hours
in a company. Thus, it can be argued that design iterations are taking up a lot of
time in development and overall they increase the total cost of a product, making
them the cause for the lead time problem.

6

Considering a problem-solving definition for PD, iterations can be seen as“bun-
dles of problem-solving cycles”that each consist of activities for designing, build-
ing, and testing phases (Fujimoto 2000). In this definition, the managers and
engineers aim to resolve the bundles of problems by compressing, simplifying,
front-loading, or overlapping the activities at each of the phases to achieve a shorter
lead time. As a result of this approach, problems are easier to address in the early
phases. It takes more cost and time to solve problems later in the development
projects, while the fidelity of the early simulation models tends to be lower (Clark
1991). A lesson learned from 1990s Japanese automaker companies and the lean
movement is introducing improved technologies which can eliminate irrational
waste in different PD stages (Sei 2000). For instance, during 80s, applying lean
approaches resulted in rapid development that gave the leading Japanese firms sig-
nificant advantages in forecasting consumer preferences and offering newer designs
(on average), faster paybacks, and more innovative products incorporating newer
technologies (Wheelwright & Clark 1994, Clark 1991).

Total lead time for a product realization process (also known as the time to market)
consists of development lead time and process lead time with start of the produc-
tion as the separation point. The trend in the automotive industry over the last
decades has been to utilize digital PD tools such as CAD and CAE to decrease
the amount of necessary physical testing. For instance, the lead time from styling
freeze to start-of-production in the Audi motors company has been decreased from
five years to only two years and still shows to have some room for improvement
(Roy et al. 2006). Waste in any form (waiting time, iterations, etc.) consumes
critical technical resources and a process’s lead time is proportional to its amount
of waste (Garcia & Drogosz 2007). However, it should be also noted that shorter
lead time does not necessarily result in a successful product or PD process, but it
does result in fewer engineering man-hours, which means more competitiveness
for the companies. Undoubtedly, with the development of digital tools and their
increased capabilities over the last two decades, the total lead time has been reduced
especially in physical prototyping and testing. However, the change has resulted in
increase for the lead time for digital evaluation of a product. This has resulted in a
long development lead time to be one of the main problems in product realization
today.

The problem area of the current research is development lead time. An example
of typical development work for a digital evaluation of a product as well as waste
in form of the waiting times and iterations that take to solve the problem is shown
in Figure 1.4. This model also shows different forms of waste can be coupled with
each other. For instance, reducing the number of iterations can cause a reduction
in total waiting time, however, reducing the waiting time between iterations does
not contribute to any reduction in terms of the number of iterations. As discussed,
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in Figure 1.4. This model also shows different forms of waste can be coupled with
each other. For instance, reducing the number of iterations can cause a reduction
in total waiting time, however, reducing the waiting time between iterations does
not contribute to any reduction in terms of the number of iterations. As discussed,
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earlier iterations are generally considered good for the development and optimiza-
tion of a product. Thus, aims is to offer solutions for the problem area with a focus
on reducing the waiting time between iterations and not eliminating them.
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Figure 1.4: Workflow for digital evaluation loop (Adapted from Neural concept SA)

The requirement specification aims at describing product functions and constraints
in the PD process as well as giving a unified impression to all stakeholders involved
in the project (Pahl & Beitz 1984). However, due to the described long develop-
ment lead time, these requirements change all the time and are rarely fixed during
the development life cycle. Requirement management tries to capture, dissemi-
nate, maintain, share, and validate product requirements (Fiksel & Dunkle 1990)
to address fluctuations. A large body of literature exists that aims to model and
understand how this management can address requirement fluctuations. From a
development lead time point of view, the fluctuations are not a reason for the long
development time, but it is the cause of it. Because suppose the lead time problem
is addressed by a supporting tool that could cover up for it by accelerating iteration
exploration, then the fluctuation of the requirements will no longer be an issue in
the PD since they will not affect the lead time anymore. As discussed, iterations
are resented for creating a long lead time but if they can be covered fast, then the
development will not take so long. Effectively addressing the problems of the out-
lined design process is challenged in both executing iterations rapidly or efficiently,
and linking individual iteration cycles so that solutions are coherent. Moreover,
for high-level technical products, cost and quality are two conflicting requirements
that obstruct the improvements in lead time, resulting in a wide variety of meth-
ods to improve the execution and linkage of problem-solving cycles. To narrow
down, the scope of the attacking problem is limited to only a long-developing lead
time which is believed to be a common problem among high-level technical prod-
ucts. For summarizing Figure 1.5 shows the design processes and their associated
problem area addressed in this research.
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1.3 Motivation and purpose

Prototypes reduce the risk of costly iterations by reducing the possibility of mak-
ing an error in downstream stages which expedites the development steps and
improves the lead time. Prototyping in product design and development ranges
from physical to analytical and aims to answer questions like ‘How well does it
work?’ (Eppinger & Ulrich 2015). Analytical prototypes are mathematical approx-
imations and therefore are highly flexible. They will generally contain parameters
that can be varied to represent a range of design alternatives. Within this defini-
tion, the analytical prototypes are analogous to building models or simulations.
Intuitively, changing a parameter in an analytical prototype is easier than chang-
ing an attribute of a physical prototype. Thus, the purpose of this research is to
provide supports that improve the efficiency (with respect to development lead
time) of the analytical prototype in a group of products that have iterative and
simulation-driven design process. However, since analytical prototypes are merely
approximating models and fail to completely represent all the aspects of the phys-
ical phenomena (just as discussed about simulations) and therefore, often physical
prototypes are needed at later stages to validate early analytical prototypes.

After the third industrial revolution which aimed to initiate the use of comput-
ers for digitalization and automation, the latest and fourth industrial revolution,
so-called Industry 4.0, is marked by large scale and integrated digitalized assets,
Artificial Intelligence (AI), Big Data, Cloud Computing technologies, predictive
analyses & maintenance, Internet of Things, etc (Keleko et al. 2022). Integration
of designing and testing (i.e. systems like CAD and CAE) which is the aim of the
presented supports in this research is one of the major goals for Industry 4.0 that
can facilitate communication, accelerate design iterations and in turn, reduce the
development lead time. Meanwhile, engineering design has an undeniable role in
the current industrial revolution (Tatipala et al. 2021). For achieving its purpose,
this research is utilizing assets from industry 4.0 such as automation and artificial
intelligence.

The digital twin is a concept developed in recent years and refers to a virtual envi-
ronment with assets that carry the footprints of a physical system. It aims to reduce
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the time to market lead time by enabling real-time data gathering, real-time pro-
cessing, as well as real-time decision-making in a transdisciplinary environment
(Boschert & Rosen 2016). In this sense, the data-driven and real-time prediction
model proposed in this research is contributing to the same goals of achieving an
integrated real-time development process. This research is narrower in the case
studies as they only address simulation of mechanical properties of a product, but
richer and broader and more like a digital twin in the envisioned design process
models as it can potentially connect different value chains from different disci-
plines.

Most of the economic, environmental, and societal impacts of a product are related
to the decisions that are taken during the design process (He et al. 2020). Design-
ing a product means deciding on the product’s lifecycle, and consequently, prod-
uct design can play an important role in addressing sustainability-related problems.
Therefore, sustainable development has become one of the core global concepts for
many countries and international organizations and lead to a huge focus on the
issue. The Sustainable Development Goals (SDGs) are a collection of 17 global
goals (Desa et al. 2016) designed to be a ”blueprint to achieve a better and more
sustainable future for all” July 2017 (UN resolution A/RES/71/313). Sweden aims
to be a leader in the implementation of the 2030 Agenda –both nationally and
globally (n.d. 2018). The 2030 Agenda involves a process of gradual transition and
further development of the Swedish social model as a modern and sustainable wel-
fare state. These goals are concerned with integrating different parts of PD, so as
to have an overall more sustainable process. This research is directly contributing
to goal n.9. Industry, Innovation, and Infrastructure. This is because reducing the
long lead time will free up resources that can be invested elsewhere. Addition-
ally, n.12. Responsible consumption and production because the application of the
support and achieving the aims of the research will result in much responsible pro-
duction. For instance, reducing the need for physical testing means less material
and energy will be wasted. Also, this research is indirectly contributing to goal n.3.
Good health and well-being, in the sense that the application of the study is on a
safety-related product that has a great environmental impact and contributes to its
efficient lifecycle, is also a contribution to the environment.

1.4 Research Questions

This research aims to study the problem of long development lead time. The de-
sign process studied is transdisciplinary, highly iterative, and simulation-driven,
therefore these characteristics need to be considered when developing support. To
this end the following research questions have been formulated:
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RQ1: What current strategies and support exist to respond to long developing
lead time and changing requirements in iterative and simulation-driven design
processes?

By answering this research question, the current and existing supports in the lit-
erature that deal with the same type of problem will be explored to find out their
advantages and disadvantages.

RQ2: What criteria are important for faster development and requirements man-
agement in iterative and simulation-driven design processes?

By answering this research question, affecting factors for long lead time will be
identified. Identified best possible solutions will be developed to identify the lim-
itations and possible success factors for proposed solutions will be discussed.

RQ3: What models, methods, or tools can be used for faster development and
requirements management in iterative and simulation-driven design processes?

By answering this research question, the solution will be further refined and ap-
plied to an in-house developed prototype. The effectiveness of the solutions in
satisfying the objective will be studied concerning success factors.

1.5 Scope and Delimitation

By iterative design processes, we imply to refine and improve concepts incremen-
tally and avoid excessive physical testing. So, iterations in this research are of a
positive character that enables improvement, therefore should not be eliminated.
The focus of this study is not to reduce the dependency of the product design on
simulations and thus not to do fewer iterations but instead to do them smarter
and more efficiently.

Simulation-driven design is a broad knowledge area that entails a lot of disciplines.
Mechanical, electrical, chemical, software, and control engineering disciplines all
use simulations in various forms and sizes to help the development process of com-
plex products. However, the interviewed case company in this research uses mostly
the term CAE equivalently and interchangeably for simulations and their design
process is driven by computer-based finite element analyses for testing and valida-
tion. Consequently, the case studies performed in the current study are confined
to this meaning and not on the other types of simulations such as the agent-based,
the discrete event, multimethod, etc. that are also widely performed in PD.
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Chapter 2

Research Methodology

This research is conducted according to Design Research Methodology (DRM)
which is one of the many methodologies that exist in design science. The dif-
ference between Design Science and Engineering Design is one of the important
distinctions that need to be pointed out for in this research. Design Science is
about developing and improving the know-how of the design process by scientif-
ically performing research on it and Engineering design is about developing and
improving a product or a service by engineering tools and methods. However,
one cannot neglect the similarities between these two as well (Eekels & Roozen-
burg 1991). The current research does not contribute to the development of some
products. Although in the performed case studies, product’s performances and
properties are studied, yet the proposed support intends to change the way these
products are being designed. Thus, it contributes to the design process of a group
of products and the proposed tools in this research contribute to the design process
of those products by making them faster and consequently efficient.

2.1 Design Research Methodology

This section is based on (Blessing & Chakrabarti 2009) methodological framework
on DRM. The framework consists of four stages as displayed in Figure 2.1.

Research Clarification (RC) is all about clarifying the work which is about to be
done and finding some information to back up the assumptions. It can be done by
looking up literature or other means of information gathering that helps to explain
the research. The outcome of this stage is a description of the existing and desired
situation. Also, a success criterion is formulated so that the outcome of the research
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Figure 2.1: DRM framework (Blessing & Chakrabarti 2009)

could be evaluated. What is measured for success criteria should be aligned with
the subject under investigation. For example, when investigating timeframe, an
increase in profit cannot be used but the reduction in time-to-market is a more
useful criterion.

By Descriptive Study I (DS-I), the researchers know about the goal and focus, but
more literature study is needed to investigate influencing factors and to shed light
on the current situation. Some gap analysis might be done and areas that literature
does not have any answer to it is identified. Other methods to increase knowledge
about the problem like interviews, field observation, etc. could be used, and then
gathered data should be analyzed to determine which factor(s) improve task clari-
fication and our understanding of the situation.

Blessing & Chakrabarti use the term ’support’ to represent possible means for im-
proving the process (Blessing & Chakrabarti 2009). A support can include“strate-
gies, methodologies, procedures, methods, techniques, information sources, soft-
ware, tools, guidelines, etc., addressing one or more aspects of design”. Prescriptive
Study (PS) is about finding the support and evaluating it. The researcher should
have a complete understanding of the existing situation when moving on with this
phase. Their description will guide them into identifying factors or ways that get
them from existing to the desired situation. Several supports could be developed
in a systematic way to address different scenarios as long as they verify underlying
assumptions. Whether the support has the desired effects, is investigated in the
next phase.

Descriptive Study II (DS-II) is about finding out how well the support works and
if it can satisfy the desired situation. To this end, more empirical studies could be
done to find out the usability of support. If the study shows that the support is
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applicable but it is less useful than it was intended, then further investigations of
the existing situation are needed and the picture of the desired situation needs to be
adapted accordingly before the tool can be improved this recommends a revisit to
the DS-I stage. The double arrows in the picture show the fact that the researcher
is allowed to revisit the stages to make sure the foundation of research is on solid
ground.

2.2 Research design and quality

In this section, some issues considering how the research has been designed and
what could contribute to its quality will be discussed.

2.2.1 Data type

From a data type perspective, this research can be divided into two main parts. The
first part which includes Research Clarification and Descriptive study One (DS-I)
involves scoping many improvement areas in companies. There are a lot of inter-
views done with different people/roles and all of these interviews are studied. This
qualitative data is then analyzed, which means qualitative research is performed at
this stage. Clearly, qualitative research is a kind of research that relies on unstruc-
tured and non-numerical data. According to (Hammarberg et al. 2016) qualitative
research is appropriate to answer questions about experience, meaning, and per-
spective, most often from the standpoint of the participant. It is used when there
is no single answer to the problem. The second part of the project which includes
Prescriptive Study (PS) and Descriptive Study II (DS-II) includes building support
to address raised problems. The work includes working with programming lan-
guages and mathematical equations explicitly or implicitly through commercial
simulation software. Thus, lots of quantitative data are validated and improved
through quantitative methods.

2.2.2 Reasoning

In different sections of this research different types of reasoning, and methods
are used, mainly dependent on what was aimed to accomplish. Inductive rea-
soning is characterized by the inference of general laws (conclusion) from one or
more instances (premises). Deductive reasoning is characterized by the inference
of premises from a general conclusion. Abductive reasoning inference to the best
explanation differs from deductive reasoning by the direction of the reasoning rel-

15



Research Clarifica�on

Descrip�ve Study I

Prescrip�ve Study 

Descrip�ve Study II

Literature 
Analysis

Empirical 
data 

Analysis

Assumption 
Experience 
Synthesis

Empirical 
data 

Analysis

Goals

Understanding

Support

Evaluation

Basic means Stages Main outcomes

Figure 2.1: DRM framework (Blessing & Chakrabarti 2009)

could be evaluated. What is measured for success criteria should be aligned with
the subject under investigation. For example, when investigating timeframe, an
increase in profit cannot be used but the reduction in time-to-market is a more
useful criterion.

By Descriptive Study I (DS-I), the researchers know about the goal and focus, but
more literature study is needed to investigate influencing factors and to shed light
on the current situation. Some gap analysis might be done and areas that literature
does not have any answer to it is identified. Other methods to increase knowledge
about the problem like interviews, field observation, etc. could be used, and then
gathered data should be analyzed to determine which factor(s) improve task clari-
fication and our understanding of the situation.

Blessing & Chakrabarti use the term ’support’ to represent possible means for im-
proving the process (Blessing & Chakrabarti 2009). A support can include“strate-
gies, methodologies, procedures, methods, techniques, information sources, soft-
ware, tools, guidelines, etc., addressing one or more aspects of design”. Prescriptive
Study (PS) is about finding the support and evaluating it. The researcher should
have a complete understanding of the existing situation when moving on with this
phase. Their description will guide them into identifying factors or ways that get
them from existing to the desired situation. Several supports could be developed
in a systematic way to address different scenarios as long as they verify underlying
assumptions. Whether the support has the desired effects, is investigated in the
next phase.

Descriptive Study II (DS-II) is about finding out how well the support works and
if it can satisfy the desired situation. To this end, more empirical studies could be
done to find out the usability of support. If the study shows that the support is

14

applicable but it is less useful than it was intended, then further investigations of
the existing situation are needed and the picture of the desired situation needs to be
adapted accordingly before the tool can be improved this recommends a revisit to
the DS-I stage. The double arrows in the picture show the fact that the researcher
is allowed to revisit the stages to make sure the foundation of research is on solid
ground.

2.2 Research design and quality

In this section, some issues considering how the research has been designed and
what could contribute to its quality will be discussed.

2.2.1 Data type

From a data type perspective, this research can be divided into two main parts. The
first part which includes Research Clarification and Descriptive study One (DS-I)
involves scoping many improvement areas in companies. There are a lot of inter-
views done with different people/roles and all of these interviews are studied. This
qualitative data is then analyzed, which means qualitative research is performed at
this stage. Clearly, qualitative research is a kind of research that relies on unstruc-
tured and non-numerical data. According to (Hammarberg et al. 2016) qualitative
research is appropriate to answer questions about experience, meaning, and per-
spective, most often from the standpoint of the participant. It is used when there
is no single answer to the problem. The second part of the project which includes
Prescriptive Study (PS) and Descriptive Study II (DS-II) includes building support
to address raised problems. The work includes working with programming lan-
guages and mathematical equations explicitly or implicitly through commercial
simulation software. Thus, lots of quantitative data are validated and improved
through quantitative methods.

2.2.2 Reasoning

In different sections of this research different types of reasoning, and methods
are used, mainly dependent on what was aimed to accomplish. Inductive rea-
soning is characterized by the inference of general laws (conclusion) from one or
more instances (premises). Deductive reasoning is characterized by the inference
of premises from a general conclusion. Abductive reasoning inference to the best
explanation differs from deductive reasoning by the direction of the reasoning rel-

15



ative to the conditionals. Deductive reasoning goes in the same direction as that
of the conditionals, whereas abductive reasoning goes in the opposite direction
of the conditionals. Some researchers (Summers 2005, Lu & Liu 2012) map these
definitions to design science. According to them, Inductive reasoning seeks to gen-
erate appropriate design knowledge based upon the given set of design variables
and design specifications (patterns of observed phenomena). Deductive reason-
ing is where the design variables (grounds) and the design knowledge (warrants)
are given and the design specifications (conclusions) are derived. In abductive
reasoning, the design specifications and the design knowledge are given, and the
design variables are derived. Figure 2.27 is a schematic example of what a deduc-
tive pattern can look like in a design problem. Clearly, abductive, and inductive
also could be derived with flipped arrows. In design research also, design variables
can be mapped to clarify research elements, design knowledge to support, and the
design specification to research evaluation results.
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If (N > )  Then (Design Fails)

Warrants

Design Variables
Design Specifica�on

Design Knowledge

Figure 2.2: Deductive Pattern in design science (Summers 2005)

2.2.3 Semi-structured interviews

In essence, Semi-structured interviews are conversations in which the interviewer
allows the respondent to express his or her own feelings and give distinct examples
instead of solely shallow answers and add in-depth insight into the challenges.
Some characteristics of the semi-structured interview are; questions to be used
flexibly, specific data required from all respondents, the largest part of the inter-
view guided by a list of questions or issues to be explored, and no predetermined
wording or order exist (Merriam & Tisdell 2015). This is important to remember,
as the main purpose of a semi-structured interview is to make it feel more like a
conversation rather than questioning.
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Many researchers in the product and production development discipline use semi-
structured interviews to gather information about how companies work and what
processes they follow. A typical process that is also being used in this study can
be viewed in Figure 2.3 in the adopted form (Flankegård et al. 2019). In this pro-
cess, first keywords and phrases were noted when reading the transcripts and then
categorized into themes. Next, all quotes exemplifying the codes were copied to a
spreadsheet together with the keywords and phrases indicating different themes,
and the naming and categorization of the challenges were developed. In the next
phase, these categories will be presented at a workshop with the management team
and interview respondents at the studied company to receive feedback on the cat-
egories.
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Figure 2.3: Interview process and the analysis afterward (Flankegård et al. 2019)

2.3 Validity and Reliability

The willingness of respondents to be good informants has implications for the
validity of the data in semi-structured interviews. Therefore, in this study for
validating data, triangulation is proposed. This has been done by not relying on
one source of the data for acquired information and facts and trying to validate
them through multiple sources of data. This is a way of assuring the validity of
research through the use of a variety of methods to collect data on the same topic,
which involves different types of samples as well as methods of data collection (Yin
2011). This has been achieved by participating in some of the internal meetings
of the companies and also some observation sessions with different actors that
are working on the same tasks and also combining observations and interviews
and enabling a data collection with triangulated insights, which provided great
evidence and trustworthiness for the research. As for the Reliability of proposed
support during Prescriptive Study (PS) and Descriptive Study II (DS-II), the final
solution that is applied to the designed prototype is validated by acceptance.
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ative to the conditionals. Deductive reasoning goes in the same direction as that
of the conditionals, whereas abductive reasoning goes in the opposite direction
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Figure 2.2: Deductive Pattern in design science (Summers 2005)

2.2.3 Semi-structured interviews

In essence, Semi-structured interviews are conversations in which the interviewer
allows the respondent to express his or her own feelings and give distinct examples
instead of solely shallow answers and add in-depth insight into the challenges.
Some characteristics of the semi-structured interview are; questions to be used
flexibly, specific data required from all respondents, the largest part of the inter-
view guided by a list of questions or issues to be explored, and no predetermined
wording or order exist (Merriam & Tisdell 2015). This is important to remember,
as the main purpose of a semi-structured interview is to make it feel more like a
conversation rather than questioning.
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Many researchers in the product and production development discipline use semi-
structured interviews to gather information about how companies work and what
processes they follow. A typical process that is also being used in this study can
be viewed in Figure 2.3 in the adopted form (Flankegård et al. 2019). In this pro-
cess, first keywords and phrases were noted when reading the transcripts and then
categorized into themes. Next, all quotes exemplifying the codes were copied to a
spreadsheet together with the keywords and phrases indicating different themes,
and the naming and categorization of the challenges were developed. In the next
phase, these categories will be presented at a workshop with the management team
and interview respondents at the studied company to receive feedback on the cat-
egories.
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Chapter 3

Theoretical Framework

In the introduction section, a prevalent problem is identified within design pro-
cesses characterized as being iterative and simulation-driven. As mentioned in the
introduction, the wide scope of methods addressing the development lead time
problem does not allow for discussing all the existing methods here. However,
this chapter propels through some of the methods in knowledge-based engineer-
ing and data-driven design as two mainstream topics on top of which this research
is built.

3.1 Knowledge-Based Engineering

Knowledge-Based Engineering (KBE) is the use of advanced software techniques
to capture and re-use product and process knowledge for several goals, among oth-
ers, to reduce lead time. The use of KBE allow complex rules, heuristics, artificial
intelligence, and agents to be embedded in the system. In addition, some KBE
systems provide more direct control over geometry and topology and feedback to
the system. These systems leverage the reuse of design knowledge to eliminate
mundane tasks within the design iteration.

Unlike traditional CAD, KBE systems can capture the intent behind the prod-
uct design by representing the ’why’ and ’how’ of a design, in addition to the
’what’ of a design (Saxena & Irani 1994). The geometric description is only one
piece of information about the total product model. Moreover, CAD is a tool
for generating geometry while KBE goes further and deals with both geometric
and non-geometric knowledge (Stokes et al. 2001), which makes KBE essentially
an extended form of CAD models. Numerous methodologies for building KBE
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applications have been developed, and most tend to be complex modeling tasks,
with emphasis on knowledge acquisition and modeling processes. KBE systems
aim to capture product and process information in such a way as to allow busi-
nesses to model engineering design processes and then use the model to automate
all or part of the process (Pinfold & Chapman 2001).

By storing knowledge to assist the design process, KBE enables computers to take
the dull routine. Therefore, KBE is most effective when handling iterative design
processes that are performed manually and take a lot of development time (Stokes
et al. 2001). The product design process as a model connects the information to
the know-how and companies pursue to transform the implicit tacit knowledge
into explicit and sharable information resources (McMahon et al. 2004). From
an academic viewpoint, KBE aims to study implicit and explicit knowledge in the
PD process of a company and provide opportunities for reuse, modification, or
improvement, but from an industrial viewpoint, KBE should meet more tangible
benefits such as reduced lead time or resource use (Van der Velden 2008).

Another definition for KBE, considers it as the application of knowledge-Based
System (KBS) technology in the domain of manufacturing design and production
(La Rocca 2012). For example, in the same way, that Artificial Neural Networks
(ANNs) attempt to simulate the human brain’s ability to learn, KBS represents
the ability of artificial intelligence in problem-solving. KBE systems aim to cap-
ture and systematically reuse product and process engineering knowledge with the
final goal of reducing the time and cost of the product development through au-
tomating iterative tasks and optimization of the design process (La Rocca 2012). In
this definition, KBE is a shared concept between AI and CAD and programming
where captured knowledge and reasoning mechanism are augmented by geometry
handling capabilities to provide engineering design solutions.

3.1.1 Requirement Management

For any developed system, correctly capturing user requirements plays a central
role in the effectiveness and flexibility of the delivered system. A customer speci-
fication is a document that describes the requirements of the desired system from
the customer’s point of view. For many products, managing customer specifica-
tions and requirement is essential and can reduce the design loops as it contributes
to clarity in the process.

A four-step process for defining and managing stakeholder requirements has been
proposed (Nilsson & Fagerström 2006) to provide a common understanding of
different stakeholders, requirements, functions, and systems during the design of
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a product, especially management of different stakeholders that affect the prod-
uct. The proposed model supports the iterative and evolutionary nature existing
between function and solution by using a function-means structure. This co-
evolution between function and form supports Value Analysis and assists in the
distribution of appropriate functional and constraining requirements to each sub-
supplier. André, et al (Andrè et al. 2014) studied four different companies to find
out how they handle fluctuating requirements and proposed a model for the in-
terface between technology development and product development. A need for
strategies on how to be flexible when engaging in product and technology devel-
opment is identified. This would likely improve the companies’ ability to manage
fluctuating requirements. And later (André et al. 2016) developed a support system
called Design Platform Manager to utilize platforms to efficiently meet product
customization demands and applied a platform approach for a supplier active in
the automotive industry.

Additionally, agile and flexible design is used as a means of handling changing
requirements and variations (Thomke & Reinertsen 1998). The authors propose
keeping requirements simultaneously frozen and liquid as an analogy for the way
a newspaper is structured to allow different time horizons for completion. Some
parts of the newspaper are planned and written weeks in advance, while others are
not finalized until the last minutes before printing. This comparison implies that
the requirements are planned to be frozen in succession, rather than all at once.
This way, designers do not have to predict an uncertain future.

3.1.2 Design Automation

Design Automation (DA) systems have a history of application and research for
several decades and are considered a subset of knowledge-based engineering. DA
has been defined (Cederfeldt & Elgh 2005) as ”engineering support by the imple-
mentation of information and knowledge in solutions, tools, or systems, that are
pre-planned for reuse and support the progress of the design process. The scope
of the definition encompasses computerized automation of tasks that directly or
indirectly are related to the design process in the range of individual components
to complete products”. Four aims are mentioned for DA including a cut on lead
time and the ability to adapt to different customer specifications which make DA
a suitable approach for the problem area of current research. DA has been divided
into two major categories: Information handling and Knowledge processing which
makes DA not only a means for improved efficiency but also a method to reduce
lead time, improve offer precision, quality assurance, and an enabler for higher
degree of customer adaptation (Elgh 2007).
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Notwithstanding the broad theoretical definitions and considering only the practi-
cal applications, DA boils down to using programming to connect design tools/assets
to and facilitate the design process by letting the computers map design require-
ment inputs to design objective outputs. The argument can be exemplified through
the DA in the different automation levels of the CATIA, shown in Figure 3.1,
which includes support on several different levels of varying capability and com-
plexity (n.d. 2006).
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Figure 3.1: Different levels of CATIA automation tiers (n.d. 2006)

Native Automation Capabilities is the first, and most rudimentary, level of automa-
tion through the specification of parameters, formulas, design tables, templates,
or power copy and is available in the native CATIA environment. Tools such as
Knowledge Ware Tools come in the second row and usually require a separate license
to run. They turn implicit design methods into explicit knowledge for obtaining
the optimum design by supporting the specification of design intent into product
models. The other tier is VB and VBA which consists of macros (.CATScripts)
which is a great tool for rapid deployment of simple automation applications but
it is difficult to debug. VBA (.CATvba) offers increased flexibility and complexity
through the implementation of a user interface. VB6 & VB.NET run outside of
CATIA and is advantageous in the implementation of the components and type
libraries and individual modules which also makes collaboration and sharing eas-
ier. The last tier is CAA which is the most powerful level of automation in CATIA
and is the hardest to implement but also the most capable in customization. It
provides access to the core CATIA framework which extends functionality fur-
ther from the API described in the previous level to operations on topology and
underlying geometry, through libraries that can be accessed in C++ development
environments.

The mentioned practical viewpoint also reveals the limitations associated with DA
systems. Some of the limitations are related to the nature of the design (it is only
a part of the development work like processing information still needs to be per-
formed) and some are related to the nature of automation (Just supports repetitive
and non-creative design tasks and can not handle creative work) and others reveal
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themselves in the context where DA is applied. This is for example concerning
the development of DA applications that is generally undertaken by domain engi-
neers who may not have formal knowledge of engineering or software development
training, with subsequent development processes lacking the structure of formal-
ized methodologies, and important principles can be neglected (Van der Velden
2008). A mapping between approaches in DA eases the understanding in the in-
dustry about what type of tasks can be automated and which approaches in DA
are suitable for what kind of tasks (Rigger et al. 2016). Other researchers indicate
that the application of DA has been limited (Rigger et al. 2018) most notably in
configuration systems in realizing solutions of interest for the user.

3.1.3 CAD-FEA Integration

Integration of CAD and CAE has been a challenge for a long time mainly because
of design intent loss, data inconsistency, the difference in mathematics descrip-
tion, etc. In the traditional sequential up-to-down design process, the idealization
of the geometric model (simplification and modification) is implemented before
mesh and simulation. Figure 3.2 shows such a process in which tedious manual
work must be implemented by designers or engineers. The initial design model
usually contains log history, tolerance information for manufacturing, and de-
tailed features for downstream applications, which are redundant information for
finite element simulations (Feng et al. 2020).
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Figure 3.2: Traditional sequential up-to-down design process (Feng et al. 2020)

CAD and FEA integration is where basic analysis tools for first-pass studies are
tightly coupled with CAD software. This allows designers and engineers to quickly
iterate back and forth in performing basic conceptual“what-if?”studies to evaluate
the merit of different ideas, compare alternatives, and filter out design weaknesses
before more detailed analysis, prototype testing, and production planning. Ad-
vances in CAD technology can reduce CAE modeling time to only a few percent
of the total. One of the early examples of this integration is ’Meshable CAD’ in
which users were required only to provide minimal input such as general meshing
density as a guide for the software transforming the solid model into an analysis
model (Roth 1999). As a result of this integrated technology, processing time was

23



Notwithstanding the broad theoretical definitions and considering only the practi-
cal applications, DA boils down to using programming to connect design tools/assets
to and facilitate the design process by letting the computers map design require-
ment inputs to design objective outputs. The argument can be exemplified through
the DA in the different automation levels of the CATIA, shown in Figure 3.1,
which includes support on several different levels of varying capability and com-
plexity (n.d. 2006).

Ea
se

 o
f I

m
pl

em
en

ta
tio

n

C
us

to
m

iz
at

io
n

CAA

VB and VBA

Knowledge ware Tools

Na�ve Automa�on Capabili�es

Figure 3.1: Different levels of CATIA automation tiers (n.d. 2006)

Native Automation Capabilities is the first, and most rudimentary, level of automa-
tion through the specification of parameters, formulas, design tables, templates,
or power copy and is available in the native CATIA environment. Tools such as
Knowledge Ware Tools come in the second row and usually require a separate license
to run. They turn implicit design methods into explicit knowledge for obtaining
the optimum design by supporting the specification of design intent into product
models. The other tier is VB and VBA which consists of macros (.CATScripts)
which is a great tool for rapid deployment of simple automation applications but
it is difficult to debug. VBA (.CATvba) offers increased flexibility and complexity
through the implementation of a user interface. VB6 & VB.NET run outside of
CATIA and is advantageous in the implementation of the components and type
libraries and individual modules which also makes collaboration and sharing eas-
ier. The last tier is CAA which is the most powerful level of automation in CATIA
and is the hardest to implement but also the most capable in customization. It
provides access to the core CATIA framework which extends functionality fur-
ther from the API described in the previous level to operations on topology and
underlying geometry, through libraries that can be accessed in C++ development
environments.

The mentioned practical viewpoint also reveals the limitations associated with DA
systems. Some of the limitations are related to the nature of the design (it is only
a part of the development work like processing information still needs to be per-
formed) and some are related to the nature of automation (Just supports repetitive
and non-creative design tasks and can not handle creative work) and others reveal

22

themselves in the context where DA is applied. This is for example concerning
the development of DA applications that is generally undertaken by domain engi-
neers who may not have formal knowledge of engineering or software development
training, with subsequent development processes lacking the structure of formal-
ized methodologies, and important principles can be neglected (Van der Velden
2008). A mapping between approaches in DA eases the understanding in the in-
dustry about what type of tasks can be automated and which approaches in DA
are suitable for what kind of tasks (Rigger et al. 2016). Other researchers indicate
that the application of DA has been limited (Rigger et al. 2018) most notably in
configuration systems in realizing solutions of interest for the user.

3.1.3 CAD-FEA Integration

Integration of CAD and CAE has been a challenge for a long time mainly because
of design intent loss, data inconsistency, the difference in mathematics descrip-
tion, etc. In the traditional sequential up-to-down design process, the idealization
of the geometric model (simplification and modification) is implemented before
mesh and simulation. Figure 3.2 shows such a process in which tedious manual
work must be implemented by designers or engineers. The initial design model
usually contains log history, tolerance information for manufacturing, and de-
tailed features for downstream applications, which are redundant information for
finite element simulations (Feng et al. 2020).

Ini�al 
CAD Model

CAE
Applica�on

Mesh
Model

Simula�on
Model

Model Simplifica�on
1- Dimensional reduc�on
2- Feature removal
3- Topology change

Meshing
1- Mesh control data
2- Material data
3- Contact defini�on

Se�ng constraints
1- Load data
2- Constraint data
3- Simula�on defini�on

Figure 3.2: Traditional sequential up-to-down design process (Feng et al. 2020)

CAD and FEA integration is where basic analysis tools for first-pass studies are
tightly coupled with CAD software. This allows designers and engineers to quickly
iterate back and forth in performing basic conceptual“what-if?”studies to evaluate
the merit of different ideas, compare alternatives, and filter out design weaknesses
before more detailed analysis, prototype testing, and production planning. Ad-
vances in CAD technology can reduce CAE modeling time to only a few percent
of the total. One of the early examples of this integration is ’Meshable CAD’ in
which users were required only to provide minimal input such as general meshing
density as a guide for the software transforming the solid model into an analysis
model (Roth 1999). As a result of this integrated technology, processing time was

23



reduced and almost 55% of the development lead time was saved, as illustrated in
Figure 3.3.
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Figure 3.3: The Meshable CAD technology (Roth 1999)

The intelligent advisory system called PROPOSE, for design improvements con-
sidering FEA results, is an example of another successful integration system (Novak
& Dolšak 2008). The idea was to encode the knowledge and experiences and build
an intelligent advisory system to help the designer to perform an analysis-based de-
sign improvement process. Regarding any question, the system provides help to
the user in the form of explanation or advice to inexperienced designers as to how
to change/improve the design in critical areas of a structure after stress-strain or
thermal analysis. Recently, Heikkinen et al. proposed a simulation-ready CAD
model that essentially integrates pre-processing with CAD work (Heikkinen et al.
2016). It has been argued that this kind of support can address time-pressured
technology development in small-sized companies, where building extensive KBE
systems are not feasible.

3.1.4 Design Structure Matrix

Design structure matrix (DSM) and DSM-based tools have been used to improve
iterative product development processes and therefore are highly relevant from
this research’s point of view. Based on DSM, researchers presented two differ-
ent iteration models for engineering design. The first model (Smith & Eppinger
1997b) called the sequential iteration model supposed that each design activity is
of deterministic duration and probabilistic repetition where the repeat probabili-
ties are defined by the strength of task coupling. They use modeling to compute
the expected duration of the iterative solution process and to suggest an initial
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ordering of coupled design tasks to minimize the expected solution process. The
second model (Smith & Eppinger 1997a) called the parallel iteration model which
provides managers with information as to which activities in a complex and cou-
pled process may be contributing the most to the iterative development process.
This information can be used to predict convergence of iteration within a project
and prediction of those coupled features of the design problem which will require
many iterations to reach technical solution.

Johansson and Elgh presented three ways that a design structure matrix can help
engineering DA (Johansson et al. 2013). It has been shown that DSM can be
used to accommodate communication by better visualization or as an inference
mechanism, to sequence the execution of the design process, and lastly to assist
the knowledge object selection at runtime. To make the product design specifi-
cation process more explicit by graphically representing the specification through
the expansion of its characteristics and logical relations. Loureiro et al. proposed a
method called design structure network (DSN) based on DSM to allow visualiza-
tion of the design variables as nodes of a network and the relations of interdepen-
dence as links and the specification reasoning as a path that connects the nodes
in a network (Loureiro et al. 2020). For the management of network complexity,
they implemented ten principles based on cognitive processes. By applying their
proposed method to the geometric specification of a surfboard as a case study, they
showed that the systematization of the principles can reduce the complexity up to
twelve times.

3.2 Data-Driven Design

Artificial intelligence is contrary to natural intelligence and the analogy is often
made with mimicking the human brain where senses gather data and human rea-
soning draws a conclusion on them. Machine learning (ML) is ”A form of applied
statistics with increased emphasis on the use of computers to statistically estimate
complicated functions and a decreased emphasis on proving confidence intervals
around these functions” (Goodfellow et al. 2016). In this definition, computers
are considered able to learn complicated response surfaces and identify patterns or
make decisions in an iterative learning process and the decreased emphasis is on
how much the utilized functions are verifiable. Thus, as Figure 3.4 is illustrating,
machine learning belongs to a family of artificial intelligence (AI).

Data-driven is a term that became popular with the advent of AI and ML and
it refers to analysis and decision-making which used such statistical methods (as
a reasoning engine) to interpret the gathered data. Frameworks for data-driven
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the user in the form of explanation or advice to inexperienced designers as to how
to change/improve the design in critical areas of a structure after stress-strain or
thermal analysis. Recently, Heikkinen et al. proposed a simulation-ready CAD
model that essentially integrates pre-processing with CAD work (Heikkinen et al.
2016). It has been argued that this kind of support can address time-pressured
technology development in small-sized companies, where building extensive KBE
systems are not feasible.

3.1.4 Design Structure Matrix

Design structure matrix (DSM) and DSM-based tools have been used to improve
iterative product development processes and therefore are highly relevant from
this research’s point of view. Based on DSM, researchers presented two differ-
ent iteration models for engineering design. The first model (Smith & Eppinger
1997b) called the sequential iteration model supposed that each design activity is
of deterministic duration and probabilistic repetition where the repeat probabili-
ties are defined by the strength of task coupling. They use modeling to compute
the expected duration of the iterative solution process and to suggest an initial
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ordering of coupled design tasks to minimize the expected solution process. The
second model (Smith & Eppinger 1997a) called the parallel iteration model which
provides managers with information as to which activities in a complex and cou-
pled process may be contributing the most to the iterative development process.
This information can be used to predict convergence of iteration within a project
and prediction of those coupled features of the design problem which will require
many iterations to reach technical solution.

Johansson and Elgh presented three ways that a design structure matrix can help
engineering DA (Johansson et al. 2013). It has been shown that DSM can be
used to accommodate communication by better visualization or as an inference
mechanism, to sequence the execution of the design process, and lastly to assist
the knowledge object selection at runtime. To make the product design specifi-
cation process more explicit by graphically representing the specification through
the expansion of its characteristics and logical relations. Loureiro et al. proposed a
method called design structure network (DSN) based on DSM to allow visualiza-
tion of the design variables as nodes of a network and the relations of interdepen-
dence as links and the specification reasoning as a path that connects the nodes
in a network (Loureiro et al. 2020). For the management of network complexity,
they implemented ten principles based on cognitive processes. By applying their
proposed method to the geometric specification of a surfboard as a case study, they
showed that the systematization of the principles can reduce the complexity up to
twelve times.

3.2 Data-Driven Design

Artificial intelligence is contrary to natural intelligence and the analogy is often
made with mimicking the human brain where senses gather data and human rea-
soning draws a conclusion on them. Machine learning (ML) is ”A form of applied
statistics with increased emphasis on the use of computers to statistically estimate
complicated functions and a decreased emphasis on proving confidence intervals
around these functions” (Goodfellow et al. 2016). In this definition, computers
are considered able to learn complicated response surfaces and identify patterns or
make decisions in an iterative learning process and the decreased emphasis is on
how much the utilized functions are verifiable. Thus, as Figure 3.4 is illustrating,
machine learning belongs to a family of artificial intelligence (AI).

Data-driven is a term that became popular with the advent of AI and ML and
it refers to analysis and decision-making which used such statistical methods (as
a reasoning engine) to interpret the gathered data. Frameworks for data-driven
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Figure 3.4: A Venn diagram showing AI categorization with examples (Goodfellow et al. 2016)

design usually consist of real-time data sensing and acquisition coupled with data
processing and storage units which then input the developing model and perform
data mining on results and knowledge (Zhang et al. 2017). AI is a big umbrella
for many practices and as discussed, the knowledge-based method is also consid-
ered one application of AI. Hence, data-driven design can be defined as a mul-
tidisciplinary science that extracts, and handle structured and unstructured data
from domain knowledge of product design and development and uses statistical
and computer science methods to draw conclusions on them, assisting domain
engineers and managers to interpret data and make a decision. With the rise of
data science, data-driven products and data-driven design are increasingly evolv-
ing. Data may be used to identify patterns and trends to drive innovation, moni-
tor product performance, and progressively enhance the product experience under
the data-informed design paradigm (Li et al. 2019). The aim of data-driven design
ranges from being sustainable in the design process by optimizing logistics, process,
or shop floor scheduling or being able to improve service, online diagnosis, and
maintenance, or saving on energy and resources by reusing or remanufacturing.

Synergies between engineering design and data science have been reviewed recently
(Chiarello et al. 2021). Through identifying tools and algorithms, the authors re-
fer to challenges in this field, among the others is the necessity of the novel use of
CAD as a source of input for data-driven methods Search for meaningful feature
representation, automatic data labeling, and speeding up the prototyping process.
Another article (Feng et al. 2020) specifically reviews data-driven product design
based on the conventional design process stages (requirement analysis, conceptual
design, detail design, and knowledge support). For requirement analysis, data-
driven methods are used to predict outputs and explore design space. For con-
ceptual design, it helps to map from customer requirements to solution output by
iterative reasoning and decision making. For detailed design, it supports the de-
sign tasks and verifying the simulation results. And as design knowledge support
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tools it used for data extraction and design realization. Each of the application ar-
eas discussed has its challenges and there is a gap in the literature for more studies.
For instance, taking detailed design, machine learning, and AI models can help
the design task by optimizing the product. In this case, the gap exists in building
the database that is needed for this task. For some products with financial and
business nature, there is a huge amount of data that can be easily harvested. How-
ever, for mechanical design applications, this is not the case and this has opened a
new challenge and research field on how to acquire big data in the solid mechanics
field (Ramnath et al. 2019). Researchers raise the question “How to teach solid
mechanics to artificial intelligence”and assert the application results in a fast solver
that can potentially accelerate the calculation of stress distribution in highly non-
linear mechanical systems, an achievement that can unlock many important more
complicated simulations, materials, loading scenarios, and optimization problems,
which previously was avoided (Mianroodi et al. 2021).

3.2.1 Case-Based Reasoning

Companies strive not only for considering and reusing past solutions but to go
further and generate new alternatives, the ones that never existed, in a feasible
design space. Case-based reasoning (CBR) is one of the methods that helps to find
a good starting point for design by searching among past solutions and finding
the closest alternative to the problem at hand therefore it is considered among
decision support systems (DSS) (Dutta et al. 1997). Representation of the design
knowledge and acquisition of the optimal solution are two initiatives of the design
process that are facilitated if past design knowledge is available and reusable.

CBR initially originated in ML science and sometimes the learning part of the
system is independently referred to as case-based learning. The objective of a CBR
system is similar to any other AI system, which is to automate solution acquisition
for the problem (Aamodt & Plaza 1994). In short, a CBR system automatically
retrieves the most similar case between previous cases which is called retrieving,
and then the designer reused this old case as a starting point to suggest a solution
for the problem at hand which is often included revising the case. Then the new
solution is tested is added to the general knowledge database which is called retain.
Overall, four pillars of a CBR system namely retrieve, reuse, revise, and retain are
illustrated in Figure 3.5.

Examples of the application of a CBR system in the product development field
exist in the literature. Contributing to each of the described pillars has been the
topic of many papers. For instance, in the case of the retrieval pillar, many new
algorithms have been developed. Unlike conventional parameters search, shape
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retrieval by matching new problem shapes with existing solutions shapes for min-
imum clearance is proposed (Johansson 2012). The target component was a car
roof rack and the system is implemented in the usual CAD to aid designers to re-
trieve the closest shape possible for further modifications. Reusing past solutions
to develop new ones helps to reduce development lead time for developing new
products (Feng et al. 2020).

3.2.2 Meta/Surrogate Modeling

Many statistical approximating methods such as Response surface methodology,
Taguchi methods, ANNs, Inductive learning, and Kriging have been used to pre-
dict the output of the computation-intensive design problems (Simpson et al.
2001, Wang & Shan 2007, Sun & Wang 2019). These methods by building meta
models or surrogate models prevent costly computations which result in cutting
the total development lead time. However, the approach’s goal is restricted in
the sense that the application area has been limited exclusively to the computa-
tional analysis stage of the development process. As a result, these technologies
are unable to span a larger range of product realization processes. For instance,
the capacity of these methodologies, to capture tacit knowledge from downstream
production and make it available to front row decision-makers is underexplored
in the literature.
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Most of these methods have been challenged by the curse of dimensionality which
implies that the performance or accuracy of a system is reduced by an increased
number of dimensions. Some of the high-level technical products, such as vehicle
body structure and aircraft designs, can have up to hundreds of design variables
which results in a highly nonlinear problem. Designers expand design dimen-
sions to address such concerns, resulting in so-called high-dimensional, costly,
and black-box (HEB) issues (Shan & Wang 2010). Another way to attack this
problem is to break down the problem into several subproblems but the drawback
is that each of the subproblems can have a different correlation with output and
optimizing weights is not a trivial practice due to coupled and complex relations
and lack of knowledge (Li et al. 2017). Although this field is couple of decades
old, and there are lots of papers on the subject, there is still a gap in literature on
the solutions for limitations like dimensionality and parameterization.

One main approach in literature as a solution for HEB is dimensionality reduction.
For instance, creating simple shapes that have just enough important inputs during
the SLA 3D printing process (Wang et al. 2018) or simplified geometry for the road
wheel design process (Yoo et al. 2021), or simple design geometry with only three
design parameters as well as a less computationally expensive CAE method, modal
analysis (Du & Zhu 2018). Another approach to overcome dimensionality is to
increase the size of the database. For example, up to 60,000 design samples for
a study on automotive hoods (Ramnath et al. 2019, 2020) and 100,000 design
samples for predicting aerodynamic coefficients of transport airplanes (Secco &
de Mattos 2017).

Recent advances in image processing have opened up new opportunities in meta-
modeling. A group of metamodeling techniques that uses images as input for
predicting the performance or property of the system has been developed (Li et al.
2017, Cunningham et al. 2019). For instance, images of a 2D linear cantilevered
beam as input have been used with convolutional neural networks (CNNs) to pre-
dict the stress field as a picture in an end-to-end surrogate model (Nie et al. 2020).
In another example images of automotive wheels are used in a model to predict
modal analysis response from finite elements (Yoo et al. 2021).

3.2.3 Generative Design

Another example of the contribution of soft computational methods to design sci-
ence is the use of AI with a combination of generative design. Generative design is
one of the integrated design processes involving CAD, solid modeling, and a range
of performance analysis tools. The subject of generative design is very broad and
shows up in a range of different applications and fields such as art, architecture,
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and product development. Shea et al. define generative design as systems that
aim to create new design processes that produce spatially novel yet efficient and
produce-able designs through the exploitation of current computing and manu-
facturing capabilities (Shea et al. 2005).

Deep generative models are other examples of research that fit into this category.
Burnap et al. have used deep generative models in the automotive styling domain,
where automotive styling design samples of the last two decades are used to gen-
erate new styles (Burnap et al. 2016). Moreover, the end-to-end AI systems in the
previous section can also be discussed from their second end, generative, point of
view. For instance, Yoo et al. used generative design to explore design space and
create a big library of design samples as input for surrogate models for automotive
road wheels (Yoo et al. 2021). Most of the applications used with these methods are
immature. This is currently a hot topic in data-driven design and the algorithms
can generate new realistic and novel design samples but the picture that is resulted
from the networks are not clear or ready to use.

3.3 Summary

There is many tools for combating development lead time than what has been
presented. Some of the ongoing successful trends are not captured such as lean
practices and concurrent engineering and requirement management. The selection
criteria have been the relevance of the methods to proposed supports (current and
future) as results of the research. An overview of some of the relevant and practiced
tools and methods as well as the contribution area in this research is presented in
Figure 3.6.

Knowledge Based Engineering
Data-Driven Design

Tools and Metods Contribu�ng Area

Design Automa�on
Meta/Surrogate Modeling

Support

Figure 3.6: Contribution area of this research with utilized tools and methods

As shown in the figure, two major contributing area of this research namely,
Knowledge Based Engineering and Data-Driven Design have been discussed in
two sections. For each category several examples of tools and methods is presented
separately in subsections. The figure represents one example from each category
that is most relevant for the proposed supports in this research.

Despite the prevalence of the solutions that exist for shortening different stages of
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the design process, many of these solution areas are hindered by different short-
comings. For example, metamodeling methods are hindered by dimensionality
problems. Several novel areas for addressing such problems are also under devel-
opment and need to be further investigated. For example, with AI algorithms new
possibilities for training on unconventional data types have emerged that can be
studied further. The proposed supports in this research will try to fill out these
identified gaps through next chapters.
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Chapter 4

Summary of papers

This chapter first describes planned studies and their connection to utilized method-
ology as well as how each of them answers the defined research questions. Next,
a summary of each paper as outcome of the studies will follow in the rest of the
chapter.

4.1 Performed studies

The workflow that connected DRM to performed studies and associated papers
until licentiate is illustrated in Figure 4.1. The figure also shows how different
studies contribute to answer the defined research questions.
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Figure 4.1: Mapping the methodology, research questions, and the planned studies

Research Proposal (RP) aligned with research clarification and tried to answer
the first research question partially. It was an explorative attempt to understand
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the problem from an academic perspective by searching different research fields
as well as industrial perspectives by interviewing the case company and outlining
the problem area. The result is reflected in the RP to increase the understanding
of the problem and plan for further studies. This study also identified success
criteria which in short is development lead time. Finally, the existing literature
is investigated to find relevant strategies and supports that can be used to further
develop or address the identified problem and achieve the objective.

Study 1 extended the investigations of previous research by narrowing down the
list of potential supports to find out the final possible contribution area. Several
methods and tools from selected areas are studied on a trivial basis to get famil-
iarized with their capabilities and limitations. Company interviews finalized, and
practical knowledge documented. A generalized design process model is devel-
oped which increased the grip on the identified problem. An envisioned support
in form of another design process model showed real-time prediction model can
be a supporting tool to solve the problem. Based on the findings that are published
in a conference paper the first research question was fully addressed by the end of
this study. Moreover, as an initiation to the second research question, and as a
part of the contribution to the paper, several rough schemes for future case studies
are suggested and critically discussed.

Study 2 continued to answer the second research question by identifying the most
influencing factors on the development lead time (success criteria). This was done
by implementing the identified tool(s) in an actual case and evaluating this with
the help of company specialists and based on the improvements that were achieved.
The implemented method was successful but showed limitations that needed to be
addressed. Moving on from this study required a full understanding of the prob-
lem mechanism and influencing factors as stated in the second research question.
The fact that the created support was tested on a case showed that the mentioned
incentive was achieved. The results and findings are published in the Computers
in Industry journal. The demonstration of the support and its limitations creates
the need for another case study which was performed in the next study.

Study 3was a revisit to the prescriptive study and re-formulation of new support to
address limitations experienced in previous support. The new support is evaluated
by its contribution to the success factor through feedback from company special-
ists and observing how much the utilized prototype is different in the realization
process from the real case curtain airbag. Although this new support successfully
addressed the previous shortcomings but in essence, showed other kinds of limi-
tations. All advantages and disadvantages of the proposed supports are discussed
in the associated papers but ultimately it is up to the design engineers in different
industries to decide which support is best for their needs. The finding of this study
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together with a summary of the problem and the systematic procedure for how it
was achieved is submitted to the ASME Journal of mechanical design.

4.2 Summary of paper 1

This paper addresses RQ1 on what current strategies and supports are currently
being used to address long developing lead time in iterative and simulation-driven
design processes. The result of the interviews and the workshops presented helped
to envision a process model which can potentially address the issue. Moreover, this
paper shows two major research areas that deals with the same lead time problem
and also studies the advantages and disadvantages of each research area.

In this paper, a group of high-level technical products with common characteristics
in their design process are defined. Semi-structured interviews were used to study
the design process which allowed the interviewer to express their true ideas and
give distinct examples. It was found that these products with transdisciplinary,
iterative, and simulation-driven design processes suffer from long development
lead time. This was because the design process for these products is experiencing
50-60 loops in the design process.

Iterative and simulation-driven products experience iterations on two levels. The
first iteration point is just before the gate where digital models and simulations are
verified in collaboration with the customers. This is the inner loop shown in Figure
4.2 where the designers iterate the work from design space constraints to objective
requirements. This can be due to the complexity of the product, and difficulty in
satisfying all the design requirements or both simultaneously. There can be several
requirements connected to different disciplines and sometimes the order of their
satisfaction becomes important. As the development work goes forward the digital
verification loops become mature and able to address all the existing requirements.
It is only then, that the concept moves to the next out loop in the second level.

The second level for iterations happens when the work between prototype test-
ing and the development process is also iterative (outer loop) which is usually due
to the dynamic nature of the customer requirements or lack of correlation with
physical tests. Overall, the two loops constitute a highly iterative process for the
case company which is a common property among those groups of products under
study in this research. In high-level technical products, developers strive for flaw-
less launch by continuously correlating design with physical testing. Therefore,
products with iterative processes might take years to be launched. This iteration
continues until a highly reliable product is realized. During this process design
and testing as two separate processes interact with each other. This is done by the
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the problem from an academic perspective by searching different research fields
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together with a summary of the problem and the systematic procedure for how it
was achieved is submitted to the ASME Journal of mechanical design.
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Figure 4.2: The generic PD model for iterative and simulation-driven products

feedback that testing provides for design and leads to its refinement.

However, the possible, and feasible solution is to do the iterations faster and/or
smarter. As a realistic example, consider a company with a product having 60
inner loops in the design phase where each of them takes several hours to resolve.
Additionally, there is a need for 7 correlations, which means 7 outer loops that take
place every two-month following a sync meeting with the customer. Together, this
makes up to a 20-month lead time only for developing work. The main problem
lies with the 60 iterations in the design process because the loops for correlations
are dependent on customers and they are usually fixed as described.

The idea was to provide theoretical background and investigate the state of practice
by process modeling. To this end, the design process at hand is modeled in a
generic way to point out its associated bottleneck which turned out to be the large
number of iterative loops that happen in the conceptual phase. Two major solution
areas for solving such problems have been identified as 1- Design automation to
perform the iterations automatically as well as 2- Data-driven approaches to avoid
the iterations. It was discussed that even though the design automation can free
designers from doing manual design loops it will not solve the issue completely.
This is due to design process characteristics such as being simulation-driven in
which computational run time creates major lead time rather than manual work.
Several workshops with simulation experts were performed to understand how
the problem can be addressed. Literature was explored to find out existing data-
driven approaches that combat development lead time. As a result of studies and
interviews, a generic design process model is envisioned to address the lead time
problem by employing an embedded real-time prediction model in the design phase.
This process model is illustrated in Figure 4.3.
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Using such models in the design process can help to map the design inputs to out-
puts through performing the digital verification. In the proposed model digital
verification is embedded design which will enable real-time prediction up until
the concept is ready for physical verification. By practicing only physical verifica-
tion coupled with design/analysis the process will enable agile sprints for building
and testing the product in each iteration. This will potentially reduce the lead time
as it will prevent many iterations in the design loop. Asking the company represen-
tatives about the proposed method, they confirmed that this can help them“avoid
all the simulations”and “reduce the number of iteration loops”and therefore
reduce the development lead time in the conceptual design phase.

Through the literature review and the workshops hindrances to applying a pre-
diction tool in the design process namely Dimensionality and Parameterization
are identified. Examples of the solutions that can addresses these hindrances are
identified in the literature and categorized. The shortcomings of each category are
discussed, and further improvements were suggested for future studies.

1. Oder reduction emphasizes using better quality parameters for building
data-driven approaches. Principle component analysis and Analysis of vari-
ance (ANOVA) are among the methods that deal with selecting the pa-
rameters by statistically analyzing their effect on the objective outputs. It
was proposed that to avoid the direct use of CAD parameters as input for
data-driven approaches, feature extraction on CAD can be a solution for
mapping design inputs to output and make the data-driven approach inde-
pendent from parameterization.

2. Avoiding parameterization emphasizes using other kinds of inputs instead
of the usual scalar parameters. Examples of this exist in literature such as
using CAD log files and images from the built prototype or performed test-
ing. To be able to produce a lot of labeled data, it was proposed to use
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ing. To be able to produce a lot of labeled data, it was proposed to use
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screenshots from CAD as input for novel Convolutional Neural Network
(CNN). In this way, designers will be able to predict the consequences of
the decisions in the design phase in real-time. Using image processing ma-
chine learning as a prediction model embedded into a button in CATIA it
is possible in every design loop to evaluate roughly any simulation output.

For a data-driven solution, which is the envisioned support, a more in-depth lit-
erature analysis was performed which resulted in two potential solutions for ad-
dressing the hindrances that exist in applying them. By clarifying the limitations
of each research area and also proposing potential solutions, this paper touches
upon RQ2 to some extent.

4.3 Summary of paper 2

This paper is a mix of descriptive study I and a prescriptive study in DRM which
leads to study2 and paper2. It was an attempt to answer RQ2 partially by showing
the importance of fast evaluation in the design process which directly affects the
success criteria which is reducing the long development lead time. This paper also
answers RQ3 by demonstrating support for conceptual design by which designers
can shorten the design process.

The paper used a curtain airbag prototype to study the possibility of using correlation-
based feature extraction in CAD for regression-based machine learning algorithms.
Figure 4.4 shows the chosen geometry for the curtain airbag which holds most of
the characteristics of a real size curtain airbag.
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Figure 4.4: The curtain airbag prototype used in this research
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It was shown that for fully defining a CAD model requires to use a lot of parameters
which in most cases will lack correlation with the objective output. The problem
of parameterization and dimensionality in using data-driven approaches and the
reason why they are happening was comprehensively discussed at the beginning
of the paper. Details of the performed finite element simulation to calculate the
volume of the airbag were presented and then a parametric study was performed on
the CAD parameters to show a great amount of difference in each parameter’s effect
on the volume as objective output. Thus, this clarified the coupled and complex
nature of this effect between CAD parameters. Using the latin hypercube sampling
method, 100 design samples were generated and studied for their volume output.
This is performed with one fully automated Python script that created geometries
in CATIA, meshed them in ANSA pre-processor and solved the generated key file
in Ls-Dyna, and then read the volume in META post-processor, and then saved
the final volume number to an excel file. It was determined that none of the CAD
parameters correlate with the final output, which is shown in three first rows of
Table 4.1.

Table 4.1: Comparison of the correlation between CAD and Sleeping parameters

Name of the parameter (refer) R2 Correlation with the output (Volume)
No. 1 (CAD parameter) 0.037
No. 13 (CAD parameter) 0.0183
No. 12 (CAD parameter) 0.0441

Area 0.829
Length of the medial axis 0.752

Sum of circumferences of all circles inscribed 0.8816

In the next phase, the medial axis of the geometrical 2D shape of the airbag
was calculated. Figure 4.5(right) shows how the medial axis was generated in
Rhino/Grasshopper. The Vonronoi component used to generate circles on equal
distance on the edge of the geometry and then by increasing the radius of these
circles and making them to create boundary, the medial axis is generated. The
meidal axis is a geometric entity like other entities such as area, circumference,
etc. These geometric entities as new parameters, referred to as sleeping parameters,
are defined and studied as a performance indicator for the inflated curtain airbag.
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Figure 4.5: Feature extraction; Flipped inscribed circles (left), Representation of medial axis (right)

4.5 (Left) shows how rotating inscribed circles on the medial axis represent an
inflated airbag. By similar reasoning, it was found that the sum of circumferences
of all circles inscribed shows an even better correlation with the volume output.
The correlation of these parameters These two parameters together with the area of
the geometry are depicted in Table 4. It was demonstrated that new features have
better correlations with the volume. And they can be extracted from geometry
without any need for model parameterization which maintains freedom in design.

Through a comparison of the correlation between CAD and sleeping parameters
(Table 4.2), it was shown that CAD parameters alone, do not lead to an effective
prediction. Regression analyses were performed to compare and validate the per-
formance of extracted parameters in a regression model by showing the ability of
these parameters in more effective predictions. The result of this paper can allow
designers to build simple but accurate regression models with a low number of
features and sample points. To maintain a high level of interpretability and to
further demonstrate the effectiveness of the proposed approach a Support Vector
Regression model (SVR) was also trained. This shows that moving from simple
linear regression to such sophisticated algorithms does not address the prediction
accuracy issue to the degree that sleeping parameters can address. Sleeping param-
eters by increasing the quality of training features have made it possible to get an
acceptable result with MLR and there is no need for advanced and complicated
regression algorithms such as SVR. This shows the effectiveness of the sleeping
parameters, such as the ones studied in this paper.
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Table 4.2: Comparison of the correlation between CAD and Sleeping parameters

Multivariate Linear Regression Support Vector Regression
Accuracy of the
regression model
among predicted
and expected sets

All 14 CAD
model parameters

Selected 3
Sleeping

parameters

All 14 CAD
model parameters

Selected 3
Sleeping

parameters

R2 0.6318 0.9505 0.8027 0.9544
MSE 14.7304 1.8802 14.3419 1.7784

The calculated simple regression will empower designers in the early stage of airbag
design to have a real-time prediction model and therefore potentially will reduce
the development lead time. This model can be added to a CAD environment so
when designers change a length and/or a radius and/or an offset they can quickly
see the impact of their decisions on the volume of the bag without any need to
perform a complex finite element analysis. Moreover, independence from conven-
tional parametrization in CAD will provide the flexibility for being creative with
new solutions since they will not be forced to follow one standard parameterization
in complex geometries which is very much needed in today’s industry.

The proposed methodology is transferable to all volume simulations in airbag mod-
els that are using 2D geometries as inputs such as knee and side airbags that deploy
from the passenger seat. Additionally, this methodology can be utilized by other
simulations that use 2D shapes as inputs such as the design of wire patterns for seat
heaters in the automotive industry. Other inflatable structures that require vol-
ume simulation can benefit from the finding of this paper, such as high-pressure
vessels, inflatable tunnel plugs, inflatable rubber dams, different kinds of inflatable
boats, etc. The methodology is also scalable to any performance evaluation that
requires good enough accuracy but fast evaluation for decision-making in the early
stages of the design process.

This framework is not applied to the case company’s design process and the in-
formation for its effectiveness comes from the presentation of the support to the
CAE engineers and also held workshops with them. However, according to the
engineers dealing with such problems, it is obvious that the design lead time will
decrease. However, more studies need to be performed to be able to quantify the
actual improvements in time.

4.4 Summary of paper 3

This paper a combination of prescriptive study and a descriptive study II in DRM
which leads to study3 and paper3. The proposed support satisfies the success factor
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completely but there are limitations and disadvantages to it. The paper builds on
top of the metamodeling techniques and attempts to address the same identified
problems namely, dimensionality and parameterization. It does not directly refine
the previous papers’ results, unlike what it mentioned in Descriptive Study 2 and
RQ3, However, it attempts to address the same problem as the previous paper
which is the long development lead time with another approach.

It was argued and supported by a literature review that metamodeling techniques
can reduce development lead time during a design process. However, most ex-
isting techniques face limitations in producing the needed amount of training
data. A computational method called dynamic relaxation existed in the literature
and it has been mainly used for simulating unstable structures previously in the
literature. The method takes some iterations to converge but the iterations are
computationally cheap as no stiffness matrix is needed to be assembled. How-
ever, discretization and some of the steps are still time-consuming. In this paper,
an implemented version of dynamic relaxation in a component called Kangaroo
in Rhino/Grasshopper is used for producing labels for 60,000 CAD models. A
methodology to create a large amount of labeled data using dynamic relaxation is
proposed that can be used on a wide range of simulations but not any simulation.
Figure 4.6 shows volume visualization in Rhino which is achieved by using the
Kangaroo component in Grasshopper.

Figure 4.6: Volume simulation visualization in Rhino

It has been argued that engineering-based datasets have special characteristics and
therefore need special treatments in terms of machine learning algorithms used
with them. One character is that the picture of the airbag as an input creates
skewed training data because a little change in the dimension of the bag produces
very little difference in the image’s pixels but the output may be affected drastically.
There are advantages to the engineering databases as well. For example, because
all the images are created digitally, a lot of pre-processing that is common with
databases can be saved. By cropping all the images in the same way by a script,
it is possible to lay all the constant pixels in one position which can save a lot of
time training in the learning process. This is something that takes a lot of time to
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process for other datasets.

Figure 4.7 shows the schematic of the database created from two sizes of images as
well as their labels which are volumes of the associated geometry. This database has
been made available to the public in an online repository (Arjomandi Rad 2022).
Most of the machine learning databases today are based on real-life problems and
literature can benefit from engineering databases like the one presented here for
benchmarking purposes.

Figure 4.7: The database consists of 60,000 labeled images with two sizes

Moreover, an off-the-shelf implemented CNN with three layers for convolutions
and pooling that each goes through the ReLU activation function. Dropout at
each layer secures overfitting and prevents the network from memorizing the im-
ages. Other hyperparameters such as (such as kernel size, alpha, pool size, activa-
tion, and padding type) in the network are default values and the other parameters
(such as dropout rate, input shape, and layer density) are chosen based on trial and
error and best practices from the literature. The training was performed with 128
as batch size and 50 as epoch number.

As shown in Figure 4.8 the loss value which is representing the summation of the
errors in our model (calculated from the cost function) for each case in the testing
database is shown on the left. And in the right, the figure presents the accuracy
which is the percentage of the correct prediction and it is a concept that can only
be applied to classification tasks. As it can be concluded from the picture, in the
accuracy there is not much gap between training and validation and converging to
roughly 90%. Also in the loss graph, both training and validation are decreasing
good and in a stable manner with an acceptable gap between them (known as
generalization gap) with every epoch and converging to the 0.2 which shows a
successful model.
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Figure 4.6: Volume simulation visualization in Rhino
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process for other datasets.

Figure 4.7 shows the schematic of the database created from two sizes of images as
well as their labels which are volumes of the associated geometry. This database has
been made available to the public in an online repository (Arjomandi Rad 2022).
Most of the machine learning databases today are based on real-life problems and
literature can benefit from engineering databases like the one presented here for
benchmarking purposes.

Figure 4.7: The database consists of 60,000 labeled images with two sizes
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as batch size and 50 as epoch number.
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which is the percentage of the correct prediction and it is a concept that can only
be applied to classification tasks. As it can be concluded from the picture, in the
accuracy there is not much gap between training and validation and converging to
roughly 90%. Also in the loss graph, both training and validation are decreasing
good and in a stable manner with an acceptable gap between them (known as
generalization gap) with every epoch and converging to the 0.2 which shows a
successful model.
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Figure 4.8: Accuracy (Left) and loss (Right) of training and validation database

Later the network accuracy was tested using 10000 new samples that were acquired
separately within a similar but separate sampling process. The testing showed
89.42% accuracy and 0.26 loss which means that from 10000 testing cases, 8943
cases were predicted correctly and 1057 cases were placed in the wrong bin.

The result of the paper shows a promising way of using novel types of input data for
state-of-the-art machine learning algorithms and predicting simulation outputs.
However, according to the company engineers and specialists, the framework is
more likely to be applied in the practice in case its limitations are deposed. Thus,
more studies are required to achieve this goal. However, according to the company
engineers and specialists, the framework is more likely to be applied in the practice
in case its limitations are deposed. And more studies are required to achieve this
goal.
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Chapter 5

Discussion and Conclusion

This section elaborates on how the results from this work answers the research
questions stated at the beginning of this thesis. The aim is to review the research
outcome by discussing the limitations of the proposed supports.

5.1 State of the art and practice (RQ1)

RQ1: What current strategies and support exist to respond to long developing lead time
and changing requirements in iterative and simulation-driven design processes?

The long development lead time as a prevalent problem in a group of products was
identified in the Introduction, chapter 1, and related topics in literature dealing
with this problem were studied and the findings are presented in the Theoretical
Framework, chapter 3. Some characteristics of these products that are suffering
from this problem pointed out to the existence of a group of special products that
share similar characteristics and similar problem. These products have transdis-
ciplinary, highly iterative, and simulation-driven design processes and they suffer
from a long lead time in the development phase that can take up to several years.
Some of the causes for this long development lead time were identified and dis-
cussed. This work resulted in a process model for such design processes which
shows a lot of the iterations are happening in what is named digital verification.
In each iteration, the product requirements are satisfied and the product is syn-
chronized with the customer before it moves either to the next iteration or to the
production phase. Digital models used through this verification process resemble
digital twins and the work can be positioned in the context of industry 4.0. It has
been argued that iterations are part of development nature and are beneficial for
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optimizing and refining every product. However, through the literature study, two
major research approaches dealing with the same problem, in general, have been
identified, namely, the design automation and the data-driven design approach.

The pros and cons of each track have been studied through the interviews and
workshops within the companies. The result shows having fully automated sys-
tems have undeniable advantages, yet it does not satisfy the industrial needs for
fast design exploration. On the other hand, data-driven approaches such as meta-
models and sophisticated AI algorithms require a large amount of training data that
needs an automated CAE simulation process. Furthermore, the design automa-
tion and data-driven approach (separately) require scripting competence which
domain engineers in the industry usually lack. Design automation is usually more
transparent but it has a slow process and requires the same expensive simulations
as manual work. Whereas data-driven algorithms lack transparency but once the
training has been performed, the speed is almost considered real-time. Which
makes them exceptionally suitable for early phases of the design process where
high accuracy is not necessary. Overall, literature analysis together with performed
interviews and workshops with a specialist in the company directed this research
toward metamodeling and soft computational techniques.

5.2 Challenges and support requirements (RQ2)

RQ2: What criteria are important for faster development and requirements manage-
ment in iterative and simulation-driven design processes?

Analysis performed to answer RQ l showed dimensionality and parameterization
as the bottleneck for a data-driven design approach to a wide range of design pro-
cesses. It was shown that CAD model parameters are not always good features for
training datasets because they lack a correlation with the simulation output. Also
following a parameterization convention limits designers’ creativity in the sense
that they are required to follow that convention when they overcome a new de-
sign case. This challenge was shown with the prototype airbag design which was
developed together with the case company. In the second paper, for designing a
shape for the airbag 14 parameters are used and the question was raised what if the
designers want to introduce a new angle or a new radius somewhere in the geom-
etry. Answering this question helped to identify the requirement for support. It
was concluded that any utilized feature in the data-driven design approach should
be independent of the parameterization convention that is used for the design pro-
cess. Designers should be able to create any shape with their creative mind and
address customer requirements without this affecting the support’s performance.
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Dimensionality was another identified challenge for data-driven approaches. As
shown in Table 4.2, the number of the utilized parameters in a data-driven design
approach affects the accuracy of the prediction model. In general, complex prod-
ucts require a lot of parameters to be designed. Historically, the meta/surrogate
modeling research field has been hindered by the high dimensional and nonlinear
problems which require hundreds of inputs to be fully defined. This challenge
shows us another requirement for support. Due to this requirement, the support
should use a minimum number of important features rather than a pile of unnec-
essary ones.

5.3 Developed supports (RQ3)

RQ3: What models, methods, or tools can be used for faster development and require-
ments management in iterative and simulation-driven design processes?

Both identified challenges were studied in the literature to find out about sup-
porting solutions. There are several methods in the literature for selecting the best
features based on several different criteria, however, this is not providing a solution
as there is no guarantee that there will be a high-quality feature between known
inputs. Therefore, feature extraction independently from geometrical parameter-
ization has been developed through medial axis theory. The proposed sleeping
parameters, not only are independent but also are correlating with the output,
and therefore as shown in Table 4.1 a few of them can constitute a higher accu-
racy of the metamodel than 14 CAD parameters. This support, by satisfying the
requirements defined in the response of RQ2 shows that data-driven approaches
can benefit a lot from feature extractions methods such as the one presented in
paper 2.

As another solution to overcome the dimensionality issue, and at the same time to
keep the models independent from parameterization, image regression has been
proposed as an alternative support to overcome the defined problem. This novel
approach uses screenshots of a CAD design as input for training an off-the-shelf
CNN model with three layers. For labeling the images dynamic relaxation method
has been used which is much faster in comparison to finite element. The results
show a roughly 90% accuracy rate for the training dataset. This study fills the
support requirements, and contributes to the research as it provides a library of
engineering-based labeled images for benchmarking purposes. Simultaneously,
it contributes to the industry by providing a methodology to achieve real-time
prediction model. This methodology can be applied to a wide range of simulations
that dynamic relaxation can provide an answer. However, it is limited in this
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aspect, since many simulations (that for example have stress as their output) are
not suitable for this method.

An advantage with metamodeling is that once the implementation of the model is
done at the companies, it should allow for more design engineers to do structural
analysis fast and efficiently in the early stages which usually tend to be done at
later stages when design changes become expensive. However, the necessity of
building training data has been considered as a downside because it is time and
labor-consuming and methods like dynamic relaxations does not always exist for
every simulation. For some companies or some products, the gain from building
such models could not be worth the pain and for others, this might open a door for
fast design exploration in the early phases. Through the interviews, the company
specialist acknowledged the fact that the proposed support can be an ideal tool for
simulations that are performed for quotation purposes. As the accuracy demand
is not high and the designers and sales department are only searching for a rough
estimate to conclude a reasonable price.

5.4 Validation of the results

The design of the used airbag prototype model and also both of the two devel-
oped supports are presented to the company specialist and asked them about the
applicability of the solution in the real case for daily use of the employees. Since
the supports are already working successfully on a close case and it shows a dras-
tic change in time to calculate the volume output, the company specialist have
confirmed the useability and validity of the proposed support (validation through
acceptance). To apply envisioned PD into a real environment in the company, the
developed supports need to be integrated into their design process. So they can
use it as an embedded system in the design environment. This part of the appli-
cation requires deep programming support from CAD software architectures and
thus remains to be addressed by companies themselves. Overall, it can be said that
the achievement from the lead time point of view is certain but the applicability
of it as a daily used support for designers needs to be implemented, studied, and
verified in future studies.

The other aspect of verification for envisioned support is its applicability of it to
any simulation in the design phase. Although several limitations exist that are
mentioned in the discussion sections will prevent the application of this process to
any simulation and any product. However, this is ongoing research, and there are
plans for broadening the scope by studying other simulations and other products
in other companies after licentiate.
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5.5 Conclusion

While design automation has been successfully used in product development to
free engineers from mundane tasks and reduce the development lead time, the
continuous growth of product complexity and unexpectedness of customer re-
quirements necessitates new smart ways to explore product design space. More
recently AI algorithms and data-driven design have shown great potential to take
up design automation to the next level and use machines to learn, generate and
analyze design variants. This study proposes a real-time prediction model for an-
alyzing product performance in early phases. The solution process model is im-
plemented on a case product of a car curtain airbag in close collaboration with
an industrial partner through two studies. The first study extracts some features
from CAD that are independent of the parameterization. In this way, the pro-
posed real-time prediction model can be used freely by the designer right after
shape modification, irrespective of which parameterization convention has been
used. The second study includes novel convolutional neural networks that use
CAD screenshots as input to predict the simulation output. This implementation
of the real-time prediction model does require a pre-built database. Through the
studies, limitations associated with each support were demonstrated and discussed
which opens up for further investigations. Despite this limitation, the company
specialist believed that the solutions are ready to be implemented in actual de-
sign processes. The industrial contribution of this research will hopefully help not
the case company alone but also other companies with high level, technical prod-
ucts characterized by iterative, simulation-driven design processes to reduce their
development lead time or successfully handle their fluctuating requirements in a
shorter time.

5.6 Future work

Extractable information from geometrical and simulation models can be explored
as the input for building an AI model. Cloud-based or voxel-based representa-
tion of an object has shown promising results in the literature. These geometrical
representations could provide a new data type for training AI models. Moreover,
physics informed neural networks (PINNs) have emerged which include the phys-
ical laws (for example a differential equation) governing the behavior under study
in the cost function. Since there are analytical solutions for crash simulation, these
equations can be tested on PINNs to improve the learning and reduce the training
size. Testing several data types on different models will determine what kind of
data works best with which AI method. The final support will also consider the
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requirements from companies about the applicability of the proposed solution to
a wide range of simulations.

Explored data types can increase the sophistication level of databases which re-
sults in better-benchmarking tools. Other sampling methods can be explored to
generate design variants that efficiently cover design space. The simulation runs
can be performed for each variant by the automated scripts or new alternative and
iterative methods such as dynamic relaxations and then the training, testing, and
validation databases will be created. The selected AI method will be further stud-
ied. Most of the implemented AI methods are designed for classification problems
and therefore need to be modified for engineering regression solving. Network ar-
chitecture will be designed, training epochs will be carried out within higher and
real scale ranges, hyperparameters will be optimized with a relevant method, and
accuracy will be reported on testing sets. The final network will be measured for
extrapolating performance.

If the development of the metamodels is successful and valid, new software tools
with a graphical user interface can be implemented at the companies and utilized
by the design engineers. This will make the use of such sophisticated AI algorithms
much easier for non engineers. In future studies we expect to find out what kind
of data types are more suitable for which types of simulations and geometries, be
it solid models, sheet metal, etc. Finally, moving from real-time predictions to
real-time analysis, a generalized framework for performing performance analysis
in real-time can be developed and validated with relevant validation methods.
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Applying machine learning in the design process can help a lot 
of industries with technical and complex products to explore 
the design space faster and more efficiently and also reduce the 
prototyping costs and lead time. 

Data-driven and Real-time Prediction Models for 
Iterative and Simulation-driven Design Processes

The development of more complex products has increased dependency on virtual/digital 
models and emphasized the role of simulations as a means of validation before production. 
This level of dependency on digital models and simulation together with the customization 
level and continuous requirement change leads to a large number of iterations in each stage 
of the product development process. This research, studies such group of products that have 
multidisciplinary, highly iterative, and simulation-driven design processes. It is shown that 
these high-level technical products, which are commonly outsourced to suppliers, commonly 
suffer from a long development lead time. The literature points to several research tracks 
including design automation and data-driven design with possible support. After studying the 
advantages and disadvantages of each track, a data-driven approach is chosen and studied 
through two case studies leading to two supporting tools that are expected to improve the 
development lead time in associated design processes. Feature extraction in CAD as a way 
to facilitate metamodeling is proposed as the first solution. This support uses the concept of 
the medial axis to find highly correlated features that can be used in regression models. As for 
the second supporting tool, an automated CAD script is used to produce a library of images 
associated with design variants. Dynamic relaxation is used to label each variant with its finite 
element solution output. Finally, the library is used to train a convolutions neural network that 
maps screenshots of CAD as input to finite element field answers as output. Both supporting 
tools can be used to create real-time prediction models in the early conceptual phases of the 
product development process to explore design space faster and reduce lead time and cost.




