

Evaluation of The
Software
Development
Process for A Multi-
Platform Solution in
Flutter

Main Subject area: Computer Engineering

Author: Dennis Andersson & Axel Axelsson

Supervisor: Garrit Schaap

JÖNKÖPING 2021 02

i

This final thesis has been carried out at the School of Engineering at Jönköping

University within Computer Engineering. We are responsible for the presented

opinions, conclusions, and results.

Before we proceed, we would like to thank our supervisor Garrit Schaap who has

guided and motivated us throughout this bachelor thesis.

Examiner: Johannes Schmidt

Supervisor: Garrit Schaap

Scope: 15 hp (first-cycle education)

Date: 2021-06-22

ii

Abstract

Throughout the years of software development, the number of frameworks and software

technologies have rapidly increased. This not only increases the difficulties of choosing

the right software, but also makes it harder to find developers in a specific area. To

create a multi-platform solution, a company would usually need competence in different

areas such as frontend, backend, and mobile development. Such a solution requires an

investment of a lot of time and resources. An alternative to developing a multi-platform

solution opposed to the conventional way is with the software development kit created

by Google called Flutter.

The purpose of this bachelor thesis is to investigate the software development process

when creating multi-platform solutions in Flutter. The study will point out eventual

differences with the software development process between Flutter and conventional

development.

To achieve this, the study collected secondary research and conducted interviews with

two developers who both worked with Flutter. In addition to this a Portfolio application

was built during an experiment phase with a daily diary as the data collection process

to validate the experiences given from the interview and secondary research. The results

point towards some general benefits of using Flutter when creating multi-platform

solutions. These benefits are only applicable when creating a product that shares the

same user interface and have no OS specific features that requires need for deep

integration into the targets device system.

.

iii

1 Introduction ... 7

1.1 DEFINITIONS ... 7

1.1.1 Multi-platform solution .. 7

1.2 BACKGROUND .. 7

1.3 PROBLEM STATEMENT .. 8

1.4 PURPOSE... 10

1.5 RESEARCH QUESTIONS ... 10

1.6 SCOPE AND LIMITATIONS ... 10

1.7 DISPOSITION ... 10

2 Method and implementation .. 12

2.1 APPROACH ... 12

2.2 DATA COLLECTION ... 13

2.2.1 Desk Research .. 13

2.2.2 Interview process ... 13

2.2.3 Comparative research method .. 14

2.2.4 Experiment ... 14

2.3 DATA ANALYSIS .. 14

2.3.1 Interview analysis .. 14

2.4 VALIDITY AND RELIABILITY ... 15

3 Theoretical framework ... 16

3.1 SOFTWARE DEVELOPMENT PROCESS .. 16

3.1.1 Planning ... 17

3.1.2 Design .. 17

3.1.3 Coding .. 17

3.1.4 Testing .. 18

3.1.5 Deployment .. 18

iv

3.1.6 Maintenance ... 18

3.2 FLUTTER... 18

3.2.1 Widgets .. 19

3.2.2 Testing .. 21

3.2.3 Web-support ... 22

3.2.4 Flutter features ... 23

3.2.5 Architectural differences .. 23

4 Experiment ... 27

4.1 METHOD OF CHOICE ... 27

4.2 APPLICATION CONCEPT .. 29

4.3 WORK PROCESS .. 29

5 Results ... 30

5.1 SOFTWARE DEVELOPMENT PROCESS ... 30

5.1.1 Interview data ... 30

5.2 PLANNING .. 30

5.2.1 Interview data ... 30

5.2.2 Experiment data ... 31

5.3 CODING .. 31

5.3.1 Interview data ... 31

5.3.2 Experiment data ... 32

5.4 DESIGN ... 32

5.4.1 Interview data ... 32

5.4.2 Experiment data ... 33

5.5 TESTING ... 33

5.5.1 Interview data ... 33

5.5.2 Experiment data ... 33

5.6 DEPLOYMENT ... 34

v

5.6.1 Interview data ... 34

5.7 MAINTENANCE ... 34

5.7.1 Interview data ... 34

5.7.2 Experiment data ... 34

6 Analysis ... 35

6.1 GENERAL.. 35

6.2 PLANNING .. 35

6.3 CODING .. 36

6.4 DESIGN ... 37

6.5 TEST ... 37

6.6 DEPLOYMENT ... 38

6.7 MAINTENANCE ... 38

7 Discussion ... 39

7.1 RESULT DISCUSSION ... 39

7.2 LIMITATIONS .. 39

8 Conclusions and further research .. 41

8.1 CONCLUSIONS .. 41

8.2 IMPLICATIONS .. 41

8.3 FURTHER RESEARCH ... 42

9 References .. 43

10 Appendixes ... 49

10.1 APPENDIX 1 (EMAIL SENT OUT TO PARTICIPANTS) 49

10.2 APPENDIX 2 (ENGLISH VERSION OF THE INTERVIEW PROCESS) 50

10.3 APPENDIX 3 (INTERVIEW WITH GOOGLE DEVELOPER EXPERT) 51

10.4 APPENDIX 4 (INTERVIEW WITH LEAD DEVELOPER) 57

vi

7

1 Introduction

This bachelor thesis is done in collaboration with Sweco. Sweco does not have a

separate objective with the work being undertaken but are primarily involved to aid us

with knowledge and experience. They are taking part of the new knowledge we generate

with this work and the work process we carry out.

1.1 Definitions

1.1.1 Multi-platform solution

The definition of multi-platform in this paper adds mobile development to the web

solution stack. This means having three entry points, namely Android, iOS, and a web

application that share the same backend which includes servers and databases. All

components included can be visualized in figure 1.

1.2 Background

Having a thought-out software development process is essential when creating any type

of software (for an in-depth explanation of the software development process see

section 3.1). A lot of steps need to be completed for a product to reach a launch ready

phase. Therefore, a lot of different definitions of the software development process

exists. With one of the goals being to potentially cut down on development time and

cost

The issue the software development process tries to solve remains because companies

and customers usually want their product to reach as broad of a market as possible. This

leads to a process that involves a high number of technologies for each phase.

According to a survey done by IDC, companies continue to be very interested in

multiple platforms (Dhillion, 2015). This often means that they want a multi-platform

solution. The process of developing this requires a lot of time and money, as well as

developers with a lot of different skillsets (Mercado, 2016).

To combat these challenges, several tools to build cross-platform applications have

emerged to aid developers (Dhillion, 2015). The goal with these tools is to achieve a

single codebase that can be compiled and executed on different platforms.

Previous studies have been conducted on cross-platform development tools over the

years. The majority of these have had focus on benchmarking and performance between

different frameworks and not on evaluating development in them in the context of the

software development process. A study conducted by Sauma & Ziai (2020) at

Jonkoping University did a comparative study between the development process on

Flutter vs React Native with respect to the developer’s productivity.

8

This thesis is different in that we do not look deeply into the software development

process in terms of how the developer’s productivity can alter, by looking at quality

and simplicity. Instead, our paper will focus on a more complete view of the software

development process and how its parts can look like when utilizing Flutter. On top of

that, the thesis focuses on evaluating Flutter as a suitable option for creating a multi-

platform solution.

Flutter as a cross-platform tool for mobile development have existed since May 2017.

In 2021 Flutters web support went from beta to a stable version (Flutter, 2021). Since

this web support is so new, there lacks knowledge and research on how to work with

Flutter for a multi-platform solution. This thesis will fill a gap in the research field that

is not yet explored and that can potentially give companies some valuable knowledge

on considering Flutter as a tool to create a multi-platform solution in.

The aim of this study is to look further into the software development process when

creating multi-platform solutions in Flutter and investigate if there are any differences

to the software development when using Flutter vs conventional development.

1.3 Problem statement

Throughout the years of software development, the number of frameworks and software

technologies have rapidly increased. This increases the difficulties of choosing the right

software (Mercado, 2016).

To create a multi-platform solution, a company would usually need competence in

different areas such as frontend, backend, and mobile development. Such a solution

requires an investment of a lot of time and resources. The variation from several

different development technologies makes it hard to give a unified user-experience

across the entire solution (Dhillion, 2015). Several codebases must be maintained

resulting in longer times when bug-fixing and implementing new features (Biørn-

Hansen, 2019).

One example of a conventional way of building a multi-platform solution is with a

website using client-side software HTML, JavaScript, and CSS. While with mobile

development, having two separate codebases natively for Android and iOS written in

Java or Kotlin and Objective-C or Swift. These parts all need to be connected to a

server-side. This consists of both a run-time environment such as Node.js and a

database created with a suitable technology such as firebase. Even for a simple

application this development becomes extensive and multifaceted. Figure 1 illustrates

this simplified version of a multi-platform solution, and in addition lists more common

techniques required to work on developing multi-platform solutions.

9

An alternative to developing a multi-platform solution opposed to this conventional

way is with the software development kit created by Google called Flutter. (Flutter,

n.d.).

The approach Flutter takes is different in the sense that only one language, namely Dart,

is required to write a single codebase for the frontend. This codebase can then be

compiled to deliver a native executable to work on any operating system. As illustrated

in figure 2, this can be used to create a multi-platform solution in iOS, Android, desktop

and a progressive web application that can run on the web (Flutter , 2020).

The reason why our thesis focuses on Flutter and no other cross-platform development

tool, is because Flutter is the only cross platform development tool that offers a stable

version of web support. This makes Flutter a legitimate tool to create multi-platform

solutions in.

Figure 1: A conventional multi-platform solution and optional technologies

Figure 2: A multi-platform solution in Flutter

10

1.4 Purpose

The purpose of this bachelor thesis is to investigate the software development process

when creating multi-platform solutions in Flutter. The study will focus on highlighting

differences with the software development process between Flutter and conventional

development.

1.5 Research questions

There needs to be an investigation of how the software development process in Flutter

looks like. The findings will be evaluated and used to inform about how the process of

developing a multi-platform solution in Flutter can look like.

RQ1: How can a development process in Flutter look like?

The findings from RQ1 together with desk-research will be further discussed to give

insight into Flutter and its potential differences.

RQ2: What are the differences between using Flutter vs conventional

development in the context of a developer’s perspective.

1.6 Scope and Limitations

No extensive look will be given on every detailed part of the software development

process. The only concern is within the software development process that might be

affected by using Flutter. This paper will not examine any benchmark differences with

Flutter or compare performance regarding other software technologies.

1.7 Disposition

The study structure is divided into the following chapters:

Chapter 2 – Method and implementation: Describes and motivates the approach, data

collection and data analysis of the paper. The chapter ends with a small description of

how validity and reliability has been secured.

Chapter 3 – Theoretical Framework: Goes over the software development process used

in this thesis and further discussion around Flutter and its interesting components

related to the framework.

Chapter 4 – Experiment: Method of choice describes and motivates the method choice

for the experiment. Application concept goes over the application meant to be built for

this thesis. The chapter ends with a work process going over the structure of working

with the experiment.

Chapter 5 – Results: Lays out the results gathered in this thesis in a systematic way.

The structure is laid out according to the software development process defined in the

Theoretical framework.

11

Chapter 6 – Analysis: The results gathered in chapter 5 is systematically analyzed with

the same structure and format.

Chapter 7 – Result discussion describes how the results have been connected to the

purpose and research questions for this thesis. The chapter ends with a limitation section

that goes over the parts left out in this paper.

Chapter 8 – A few conclusions and implications are given here. The chapter ends with

ideas for future work and how the study can be carried on for further research.

12

2 Method and implementation

2.1 Approach

As a basis for the thesis regarding the software development process, desk research will

be performed. This will give a more thorough understanding of the different parts

involved within the process, to help evaluate the development of multi-platform

solutions. To evaluate the software development process in Flutter a case study with

qualitative research will be conducted. The research entails interviews with a

complementary experiment.

A case study is most suitable when you want to focus on a single unit for analysis

(Saldaña, 2011). Unlike studies where you focus on many participants to get a broader

view, this allows us to go more in-depth.

For the first part of this thesis, a case study will be suitable, to get in-depth knowledge

of software development in Flutter. It allows us to interview developers who are

experienced with working with Flutter and inquire about their approach and thoughts

about developing in Flutter. Their knowledge and experience with developing will then

be combined with desk research and an experiment as a foundation for RQ1.

Using a case study together with an experiment will not be enough to do an exact

description of every specific little detail regarding the software development process

and how it can affect the creation of a multi-platform solution using Flutter. But the

evaluation from RQ1 will still be enough to draw at least some valuable insights into

the differences with working in Flutter. These differences will be beneficial when

considering Flutter regardless of how the software development process looks like.

When enough data through our desk research has been collected. An interview process

can be laid out in preparation for our interviews. The interviews will be performed with

developers that are currently working with software development. These developers

will provide knowledge with developing multi-platform solutions in Flutter. Further

details on how this process went ahead can be read in section 2.2.2.

The data from the interviews will yield a software development processes that are

accurate representations of how a real-world instance of a process can look like. The

data and desk research will be the foundation behind an experiment. The experiment

will be used to evaluate the software development process for Flutter by developing a

multi-platform solution. The experiment is because Flutter’s web part is relatively new

having just left beta and the findings from RQ1 regarding Flutter can be heavily biased.

Therefore, developing our multi-platform solution in Flutter can be used to strengthen

the potential differences when utilizing Flutter.

As a final evaluation, a qualitative comparison method will be done to form a

conclusion of the potential differences with Flutter.

13

2.2 Data collection

2.2.1 Desk Research

Desk research or secondary research is effective in the starting phase of a research

process. Secondary research is the act of reviewing previous research to gain a broader

understanding of a subject. This is almost always the first point of departure before

answering the papers primary research questions. This is because most of the basic

information can be easily fetched which then can be used as a foundation in the research

process (Stewart, 1993).

For this paper, external desk research with focus on online material will be performed.

The desk research will lead to complementary information that aids us in the process of

forming our interview structure in a scientific way. It will also strengthen our evaluation

of Flutter with online lectures and research material that covers adequate information

about the software development process both in Flutter and conventionally.

2.2.2 Interview process

Interviews will be conducted for RQ1. An interview is best suited to gain insight into a

subjects’ opinions and experience of a phenomena. This results in an established

knowledge base for how certain software development parts in Flutter can look like.

These parts are applicable to the real world and used by companies. The interview types

will be semi-structured and consist of open-ended pre-determined questions (appendix

2).

The participants will be sent an introduction text in advance with important details of

the interview to prepare them about the topic at hand and what the study sought to entail.

The document is also a step for upholding full confidentiality and transparency between

interviewers and the participants regarding how the video and text material will be

handled in this paper. This document is also sent out early enough to give the

participants at least 24hours to withdraw or raise any concern if anything in the

introduction was unclear (appendix 1).

A pilot interview will be conducted with a person of similar expertise to ensure that the

questions of the interview were stated in a way that is easily understood and provides

informative answers that align with our work. The answers from the pilot interview will

be analyzed by discussing what kind of data we received. Based on this, both the

interview questions as well as the introduction text can be improved and clarified.

The participants of the interviews are chosen for their expertise and experience with the

subject of matter. The interview targets will be developers that have been working with

Flutter and have extensive knowledge about it.

The interviews will be conducted over Microsoft teams and be recorded. One of us are

responsible for taking the lead on asking the pre-determined questions, while the other

14

one can focus on listening more attentively, taking notes, and noticing any interesting

answers and asking follow-up questions that the lead interviewer might miss. For the

interviews, a follow-up mail can be sent to the participant with a few additional follow-

up questions or clarifications that were identified during the analysis.

2.2.3 Comparative research method

A comparative research method will be applied to the software development process

identified in RQ1 and additional secondary research in the form of online material. This

comparative analysis is qualitative and allows a systematic approach to identify what is

shared and what differs between the instances. The value of this method is that it

provides a wider lens to view the context of the different software development

processes (Hammond, 2020). Which will help this paper with answering RQ2 and lay

out beneficial discussions in chapter four and chapter five.

2.2.4 Experiment

To have enough data to evaluate the software development in Flutter, as well as discuss

the potential differences of making an entire multi-platform solution in Flutter vs

conventional development. An experiment will be conducted to fill in the gaps from the

findings in RQ1. Experiments are also an appropriate method for evaluating new ideas

and theories. This was used to evaluate how the software development could look like

in Flutter.

During the experiment process of developing a multi-platform solution in Flutter, a

diary will be used as the method of choice. A diary is a good complement for other

methods and is particularly important when observations is not possible (Hammond,

2020). Therefore, since the experiment will be based on our own experiences with

developing in Flutter a diary document is the obvious choice to use. This will provide

data and records over the course of the entire experiment.

2.3 Data Analysis

2.3.1 Interview analysis

The gathered material from the interviews will be analyzed using a qualitative content

analysis. Content analyses involve systematic reading of content and assigning labels

to identify interesting or meaningful content. The qualitative method to the analysis

allows for identifications of patterns and the meaning of the content. Based on the

findings of the content the course of the research could be changed. This approach is

based on our open-ended research questions that allows the findings to guide the

research (Bengtsson, 2016).

The recordings from the interviews will be transcribed word for word. The transcribed

interviews are then individually read through multiple times and relevant content are

15

outlined by being marked and commented upon. After this, we will discuss our different

findings and relevant content. The result is then categorized, summarized, and presented

in the thesis.

2.4 Validity and reliability

A case study can become biased with our interpretation of the gathered data and

subsequent argumentation as basis for the new findings. Therefore, we will only try in

an objective way to highlight the differences between the software development

processes without judging which one might be better or worse.

The nature of qualitative studies makes generalization of a phenomena very hard due

to the in-depth focus of smaller sample sizes or even single cases. This also leads to the

study being almost impossible to replicate since the data is gathered from a very specific

context and source (Bengtsson, 2016).

16

3 Theoretical framework

3.1 Software Development Process

The software development process, also known as the software development lifecycle

(SDLC), is the process of developing software and is often broken up into distinct

phases. “A lifecycle covers all the phases of software from its inception with

requirements definition through to launch and maintenance” (Ruparelia, 2010).

The software development process and its phases and steps are illustrated in figure 3.

This is the final definition of the software development process as this thesis uses.

The SDLC allows software to be developed in a systematic way and increase the chance

of delivering completed software projects within the timeframe and budget specified

while still maintaining high quality (Apoorva Mishra, 2013). By applying a SDLC, a

software company can organize their work efficiently when developing and working on

software.

There exist many different models of the software development life cycle. These

models are generally used to describe the SDLCs internal phases and how it can be

approached (Ruparelia, 2010). These phases illustrate the work needed to be done to

complete any software development. Although the SDLCs differ from each other and

contain different number of steps with different names, the phases are similar in their

essence, but just organized differently.

In general, every software developed will have to go through some form of

requirements capture to understand a problem, a solution needs to be designed, coding

the actual solution, testing of the created solution, the solution needs to be deployed and

then comes maintenance of the product (Apoorva Mishra, 2013).

The content of each phase described below is based on the phases from Pham (2019)

but with some changes to better suit how we will explore them.

17

Figure 3, illustration of a software development process

3.1.1 Planning

Normally the planning part during development is mainly planning the current iterative

cycle and the work being required for it. This is based on the requirements for the

product and the priority of the products specification.

According to Dawson (2014), two main processes are required to produce any software,

the project management process, as well as the software development process.

The project management consists of all management activities that is required outside

of the actual coding of a product. For example, forming a team, planning the software

development, defining, and controlling the product, as well as estimating the time – cost

– scope of the product, happens in the planning phase before the actual development

can begin. These areas might be relevant of how to approach working with Flutter and

are included in the planning phase.

3.1.2 Design

In this phase the pre-designed solution architecture and user-interfaces in the form of

mock-ups are implemented. How this is approached and implemented in the solution is

of relevance to the software development.

3.1.3 Coding

This phase is concerned with the actual building of the product. Technical details of

how the software is assembled will be discussed here.

18

3.1.4 Testing

Testing of the completed parts is a necessary step to ensure that the solution works as

intended. By finding bugs and problems before the solution is deployed to the public

potential risks can be mitigated.

3.1.5 Deployment

Deployment is the action of launching a new product or a big update to the public, this

only happens once for each new version of the solution, and often when the

development on that version is completed satisfactory.

3.1.6 Maintenance

This is a phase in which a product is often put into when active development on the

product is finished. Here the product is maintained to ensure that it is working as

intended. Updates and features could still be implemented this phase. The

characteristics of a software product that is maintained is different from a new product

in active development. Most concern here is laid on steps like bug fixes and minor

changes while ensuring that the product is up and running. The internal process of the

work here is usually longer.

3.2 Flutter

A problem with most native applications as stated earlier in the thesis is the time, and

cost consumption required to achieve a native multi-platform solution. For the end user

this results in nothing more than two devices, having the same capabilities, which is to

be expected in today’s day and age. If you use a navigation system on Android & iOS

or on the web it should work the same in terms of core functionalities and user

experience (Chadha, 2017). But “from a software engineering perspective,

implementing the same feature on different platforms requires the use of vastly

dissimilar languages, APIs, and software architectures” (Chadha, 2017).

The goal with Flutter is to alleviate this unnecessary process by creating a portable

framework, capable of natively compiling an application to any target device with a

single codebase (Flutter, 2021).

With Flutter 2.0 released, web became another stable target device for Flutter. The

vision is not to be a full replacement for the traditional document-based experience

using HTML, CSS, and JavaScript but to instead provide everything that is great about

Flutter for the mobile experience, with highly interactive, graphically rich content and

compiling it into the web landscape (Flutter Team, 2019).

The following subparagraphs will briefly describe some of the primary parts that makes

Flutter different in its approach.

19

3.2.1 Widgets

This is the core part of Flutter. The whole user interface is constructed using widgets,

everything from buttons, text, and images are built using widgets. This includes more

than what the user can interact with. Even styling, padding, margins, and your entire

application itself is a widget (Flutter, 2021).

Essentially there are two types of widgets in Flutter, Stateless widgets and Stateful

widgets. Just as the name implies, if a widget does not do anything that can alter the

state of the application like a static text on your screen, then it is referred to as a stateless

widget. On the contrary if it does alter the state, like for example a button that sets off

some logic execution, then it is stateful.

Widgets have a parent and child relationship, and since the entire application is built

using widgets, this leads to a parent and child hierarchy of widgets. An illustration of

this can be seen in figure 4.

This makes styling and building user interfaces very intuitive, because you write all

your dart code in a declarative way with a single codebase. Instead of having to wrap

your traditional HTML code into containers, to separately style it by writing CSS. A

code snippet illustrating a basic flutter program can be seen in figure 5.

However, as with everything regarding technology, one potential limitation with this

approach is a problem referred to as the state management problem. In short terms this

means that since Flutters UI is a widget tree, setting or altering the state of a parent

would lead to all its associated children to re render. This could cause some

performance drawbacks, especially on large applications (Boukhary, 2019).

20

Figure 4: A simple representation of a widget tree

21

Figure 5: A sample project

3.2.2 Testing

Testing in Flutter is split up into three parts, unit testing, widget testing and integration

testing. Unit testing is written to check the correctness of a single function, method, or

class under different conditions (Flutter, n.d.). When dealing with external

dependencies in the codebase Flutter needs to utilize non prebuilt packages to imitate

that dependency. An example of such a package is the popular mock library, Mockito

(Mockito | Dart package, n.d.).

Widget testing or component testing tests a single widget to verify that the behavior,

interaction, and UI of that widget matches the expected outcome (Flutter, n.d.)

Integration testing is more extensive and meant to test the complete application or large

parts of it, with the goal being that all the widgets and services works together (Flutter,

n.d.). In its essence this test should verify that the application works as expected by a

consumer.

22

3.2.3 Web-support

As previously mentioned, Flutter does not envision their web support to be a complete

replacement to traditional websites, therefore it is clearly indicated on their website that

Flutter is most valuable when you want to create any of the following scenarios:

3.2.3.1 SPA (Single Page Application)

A web application that consists of a single page. You load a single HTML page once

and nothing more during the entire session of visiting the site. The browser only renders

the information necessary when an action is performed by the end user with the help of

client-side JavaScript.

Compared to a regular multi-page application that was historically more common, with

links navigating the client user across different parts of the website, forcing the website

to render multiple times (Solovei, 2018).

3.2.3.2 PWA (Progressive Web Application)

A progressive web application is a web-solution built to give a native like experience

across all devices. The goal is to give a unified user experience across mobile and

desktop (Arroyo, 2020), so that browsing websites on a mobile device does not feel like

two separate technologies for the end user.

A website in Flutter is essentially always a progressive web application. By just a few

clicks, anyone can turn their single page application into a progressive web app.

3.2.3.3 Turning existing native application for Android and iOS into a website

As the title says, because the framework is the same and web is just another target

device, any existing Flutter application can easily be turned into a website if the

company desires to expand their product at any given time.

It is therefore not recommended or suited to use Flutter for text-rich, static content such

as websites with a lot of articles and static text content like newspaper sites and blogs

(Flutter, 2021).

These recommendations and guidelines will be taken into consideration during the

experiment phase, and therefore a website suited for the technology of choice will be

built. The experiment will also build and compile two additional target devices, one for

Android and one for iOS. To highlight the portability aspect of Flutter when turning a

PWA into a mobile application.

23

3.2.4 Flutter features

This section will go through some key features that is beneficial when developing

applications in Flutter with regards to web development as focus point. These features

will be documented and explored while conducting the experimental part of this paper.

3.2.4.1 UI–inspector

Because Flutters entire view is built up using widgets, having a visual representation of

the hierarchical structure of the parent and child relationship is beneficial when dealing

with large applications in Flutter. The UI – inspector is therefore a tool to combat this

problem and can be used when working with any type of layout (Flutter, 2021).

3.2.4.2 Hot reload & Hot restart

A benefit that always gets brought up in every paper looking at Flutter for mobile

development is the feature hot reload. This feature allows code changes to be loaded

into the virtual machine so the widget tree can be rebuilt while preserving the

application state (Flutter, 2021).

The benefit with this is that developers can save time during development because small

changes like altering some color scheme or adding a new button to the screen does not

have to cause a full recompilation of the project. For Flutter web hot reload is currently

not supported as an option. Instead, something called hot restart is used. This is

essentially the same functionality except that the flutter app gets restarted and does not

preserve its state which is comparable to refreshing a website.

3.2.5 Architectural differences

This section will briefly highlight some of the internal differences between the

architectural structure of Flutter web and how the approach is slightly different to

Flutter for mobile development.

3.2.5.1 Compilation

Flutter has four compilers that is being used for different purposes. Two for mobile and

two for web:

1. Mobile

• Just in time + Virtual machine

• Ahead of time + Runtime

2. Web

• Dev_compiler (dartdevc)

• Dart2js

24

Two common and traditional approaches when trying to execute computer instructions

is by using either something called Ahead of time (AOT) or interpretation (Aycock,

2003).

Interpretation is a high-level compilation method that interprets the code one step at a

time during runtime (Poeplau, 2020). This makes it a very suitable compilation method

for debugging purposes because the program will crash once it approaches a code block

that it cannot interpret. The downside with pure interpretation is the performance

drawbacks it gives. Compilation never takes place and no conversion to machine code

occurs, it simply interprets source code and gives the desired results back. This makes

interpretation slow compared to compiling source code directly into machine code

(Poeplau, 2020). AOT compilation as the name implies, does all the compilation prior

to runtime. It compiles a single native executable already at build time by converting

all source code straight into machine code (Poeplau, 2020). This gives opposite benefits

and drawbacks compared to the interpretation process, because this lets the application

run fast in terms of performance but is much harder to debug when something goes

wrong.

Just in time (JIT) compilation is a mix between these two styles. Just like the interpreter

it runs during runtime but instead of just interpreting every code block it compiles the

code block straight into machine code one step at a time. This makes JIT faster than

traditional interpretation but still gives you all the debugging benefits of it (Aycock,

2003).

The reason to why Flutter separates mobile development into an JIT and AOT compiler

becomes more understandable now. It is because of the nature of these compilers. An

JIT compiler is simply more suited for debugging purposes because it compiles during

runtime, which allows for benefits such as hot reload to accelerate the development

process. Therefore, during development mode, when using a virtual machine through

the dart virtual machine JIT is utilized (Dart overview, u.d.).

When the development phase is finished and a launch ready product is ready to be

produced, Flutter uses an AOT compiler to translate the Dart code into assembly files

which later gets compiles into binary code suitable for the architecture in mind in this

case native ARM for mobile (Dart overview, u.d.).

As mentioned previously, with Flutter you have the same framework across all

platforms but for targeting web applications, some small adjustments had to be made.

This is because compared to mobile development, the web runs on JavaScript. So

instead of compiling your native code into ARM, it gets compiled into JavaScript when

targeting the web (Flutter , 2020). Therefore, Flutter uses two different compilers when

dealing with the process of building a single page application.

The Dev_compiler is used during development time and lets you run and debug your

web application in a web browser. It is like that of an JIT compiler in the sense that it

supports incremental compilation (Dart, n.d.). It is therefore more suitable and

recommended to use during development because it supports benefits such as faster

refreshing and better integration with Google Chromes development tools (Dart, n.d.).

25

For compiling a production ready application Flutter recommends using the Dart2js

compiler instead. The compiler is more optimized for this purpose, and it simply

packages the entire application into a source file that can be natively executed on a

browser (Dart, n.d.).

Overall, the platform differences between compiling to different platforms are so small

that no further look in the experiment phase or theoretical discussing will be taken

regarding this.

3.2.5.2 Rendering process

For mobile development, Flutter only has a single rendering mode called Skia. Skia is

an open-source graphic library that Google acquired back in 2005. It runs across a

variety of different platforms because it provides a common set of APIs. It serves as the

graphics engine for products such as Google Chrome and Chrome OS, and Android

(Skia, n.d.). This makes it a suitable graphic rendering tool for Flutter to utilize. Flutter

web comes with two different rendering modes. One that utilizes a combination of Skia

and web elements to minimize download size, and another one that combines Skia with

web assembly to deploy graphics on the web (Skia, n.d.).

1. HTML renderer

Provides a smaller download size by “combining HTML elements, CSS, Canvas

elements, and SVG elements” (Flutter, n.d.).

2. CanvasKit renderer

Unlike HTML renderer, this rendering mode provides a larger download size

but is more consistent for both mobile and desktop. Both in terms of

performance and graphical look (Flutter, n.d.).

According to Google the reason behind this is because generally you do not want a large

download size for websites when browsing on a mobile device because it can impact

performance and lead to additional bandwidth fees. While for desktop this is generally

not an issue. (Flutter, 2021).

By default, Flutter automatically chooses which renderer to use if no additional setup

specifications are made during the creation of an initial project (Flutter, n.d.).

Google does not clearly state how much more download size that can be expected by

using CanvasKit, or how greatly the performance and visual representation is for the

application when using HTML renderer instead.

The reason this can become a real issue is because on average a website is reasonably

small. According to httparchive, a website that regularly keeps track of size and quantity

of many websites. An average website between 2018 – 2021 is ~2Mb for desktop

(HTTP Archive, 2021). This means that if Flutter greatly exceeds this number, it can

26

potentially scare customers and developers away from adopting or considering Flutter

as a multi-platform solution. This is because large increase in size leads to increasing

loading time for clients visiting your website (Manhas, 2014). It also reduces your

overall search ranking on Google because speed is a landing page factor for Google

search and Google advertisement for mobile browsers as of 2018 (Addy Osmani, 2019).

27

4 Experiment

4.1 Method of choice

It is important to point out the validity aspect of this experiment. Since this will be an

interpretation of our own observations when developing a multiplatform solution in

Flutter. The ability to replicate the same experience and result might not be possible.

We believe that the findings collected from this experiment can be of value when

compared to secondary research for pointing out some differences between using

Flutter vs conventional development. The findings can also be of use for further studies

but will most likely not be enough data to give a clear and concise answer on its own.

The diary will be written separately and will not be discussed between the participants

until the experiment phase is completed to avoid inflicting biased opinions into the

process. the diary itself will be written in a structured way according to the papers own

established version of the software development process described in figure 3.

Four main questions will be in mind during the documentation process when writing.

An example of how the diary template looks like for a given day is visualized in figure

6. The reason for structuring the diary in this way is that it facilitates the analysis

process. Because data and relevant parts can then be more clearly compared to the

software development process once the experiment is done.

28

Figure 6: A model of the diary template

29

4.2 Application concept

The application concept built for this thesis was a portfolio platform. On the platform a

user can navigate to various social medias through a footer, visit an about page and

personalized profile page. Lastly a user can visit a project page that displays all the

projects currently uploaded by the user. Here the user can apply all four CRUD

operations on the different projects to dynamically create/delete projects. This concept

allows for both user-interfaces and logic to be created for the application.

The application idea is based on an application that could solve an actual need, which

makes the experiences working on it more valid. The size and design of the application

will also be enough to follow structured work of the software development process

where each phase and step can be documented.

The codebase for the frontend part of the portfolio application will be built using Flutter.

The backend will utilize Firebase as the service for hosting the database. Firebase was

chosen because we have previous experience working with it, and both technologies

are owned by Google, which makes the integration process as straightforward as

possible. Since the goal is to look further into Flutter, the choice of technologies for the

backend does not matter.

4.3 Work process

The process of creating the application follows the software development process as it

is laid out in the theoretical framework. The work process follows an agile scrum

methodology to achieve a better structure on the work because it is more in line with

how developers work in the industry. This causes the work to be more feature-driven

and combines the steps described in the development phase in iterative sprint cycles.

The different actions required for the sprint is categorized into its relevant step when it

is documented in the diary.

30

5 Results

Here the results from the interviews and experiment will be presented. The chapter is

divided into phases of the software development process as discussed in chapter 3. For

each of the areas discussed, the findings will be presented in a structured way that

clearly states where the evidence comes from.

The transcription of the interview data can be seen in appendix 3 and appendix 4. The

interview data have been corrected grammatically for clarity.

5.1 Software development process

5.1.1 Interview data

The interviews with both the lead developer and the google developer expert shared

similar opinions regarding the development process. The overarching theme was that

the development process was not bound by the type of software that is being utilized

by a company. The team structure and process of working remained the same. Both

companies still needed to go through the same traditional agile workflow of having

daily sprint meetings, retrospectives, and code reviews.

The only potential benefit covered regarding this, was that you get a unified user

experience across multiple devices with a single codebase, and this can save time during

development. This is pointed out by the google developer expert as a key reason during

development because for the most part, developers are not experts in multiple platforms

at the same time. Namely native Android, iOS, and web applications in this case. This

is only an advantage if you are a small startup firm with limited resources or one or two

people trying to create their own application across multiple devices. As soon as you

want to separate the design into two separate entities, Flutter is not the right tool to use.

The Google developer expert also points out the benefit of being able to share the user

interface between all the platforms. Because now a days most applications written will

look and behave very similar regardless of the operating system that is running the

application. For this reason, a single codebase makes sense and being able to share the

UI saves a ton of time.

5.2 Planning

5.2.1 Interview data

The google developer expert and the lead developer had similar opinions when talking

about gathering requirements for a project. The shared opinion was that this step is not

affected by the choice of using Flutter as a client-side application. It rather depends

more on the type of product that the client wants, or the overall operational structure of

the company. The google developer expert worked at an agency which meant they had

a more rushed schedule of delivering the products as fast as possible to the customer.

31

The lead developer worked at a company that focused purely on their own application

instead of selling multiple products to different clients. But the process of gathering

requirements was just about the same, it was not affected by using Flutter. It was more

about the fact that they had their internal application that they worked on, and

stakeholders and product mangers decided the scope and requirements of the

application.

Forming teams when using Flutter is no different compared to native development in

terms of size. Both the lead developer and the Google developer expert had the same

team size while using Flutter compared to native development. Both developers worked

in some type of agile method to determine the scope of the product, and divided the

instructions given by the project manager between team members.

Both the lead developer and the Google developer expert touched upon the fact that

time-scope-cost can potentially be improved by using Flutter. Instead of having five

people divided into smaller separated groups as in native development, they can with

Flutter work within the same codebase but with different views and functionalities. This

saves time according to the google developer expert, but only if the application built is

mostly UI-centric. If the product requires special sensors or packages that is not

supported, the development time compared to native development can be much slower

instead.

5.2.2 Experiment data

The experiment did not look deeply into the definition of planning and what it entails

for the software development process. This was mainly because we were limited to only

two people, making the emulation of having a real planning with communication to

clients, forming a team structure, as well as time, scope, and cost discussions nearly

impossible to perform in a meaningful way.

5.3 Coding

5.3.1 Interview data

The interview process covered a few points regarding coding benefits and drawbacks

with Flutter. Features such as Hot reload was pointed out as a convenient tool for

developers, which worked well even on large enterprise systems.

The biggest drawback with Flutter pointed out by both the lead developer and the

Google developer expert, was the support for handling OS specific tasks. If a package

or plugin made for Flutter does not already exist it can be difficult if not impossible to

call some of these OS specific API’s. Some of the drawbacks mentioned could arise if

you want any type of background process in your application. For example, scanning

for Bluetooth devices in the background while the application is not active, or having a

32

payment process system where you must type in your credit card number and then show

a website for them to 3D verify themselves with a face scanning method.

When discussing flutter web, none of the participants in the interview utilized Flutter

web if all they wanted was a website. The main reason behind this was that web specific

APIs are more suitable and easier to connect directly with JavaScript. The google

developer also mentions that the speed in development with web frameworks like

Vue.js is faster compared to Flutter web. The size was another contributing factor, the

lead developer had considered the idea of turning their website built with react into

another target device for Flutter. But the size scared the company away from

considering it, because of reasons discussed in section 3.2.4.2.

5.3.2 Experiment data

The experience gathered from us during the experiment shares similar experiences with

some Flutter features. Hot reload was a convenient tool to have, the only drawback was

that this functionality was not added to flutter web. Flutter web as mentioned in the

theoretical framework only comes with hot restart as of writing this. Hot restart proved

to be much slower compared to hot reload. The feature also had a habit of crashing or

freezing during development of the experiment, which created long loading times even

for small changes. The only time hot reload could be utilized were during the time

testing happened on a mobile emulator or physical mobile device, which worked

flawlessly for us. Another good experience was the documentation written for Flutter.

Everything is extensively written and easy to access on the website so getting a project

up and running for the first time without any prior experience only took a few

instructions detailed inside a written guide by the Flutter team (Flutter, n.d.).

The issue with Flutter having a hard time calling dependencies closely related to

hardware was not an issue during the experiment because the application built did not

handle any sensors or payment systems that needed specific packages to work.

Overall Flutter web gave the same impression as if we were doing Flutter for mobile,

except that it was for another target device. The same packages and plugins were

available to us, and the web part never limited us during development.

5.4 Design

5.4.1 Interview data

According to the Google developer expert, Flutter is faster to get into since Flutter is

using declarative UI, which abstracts away a lot of the development. When building

user interfaces in native Android development you need to understand the whole

application lifecycle, how different activity instances transition between different

states, like on-resume or on-start. When coding in Flutter those states are handled

automatically, and the developer only needs to think about how the layout of the

33

components should be placed on the screen and what should happen when a user

integrates with it.

But Flutter removes all these hurdles for newcomers to build applications. However, it

is sometimes unusual for people to build applications in a declarative way. Especially

if the person has a background in C or Java. But once it clicks, it becomes much faster

to build applications.

Both respondents lifted that creating UIs in Flutter allows the user to implement any

design without limitations because Flutter gives the user control to manipulate every

pixel on a canvas board.

5.4.2 Experiment data

The observation from the experiment is that declarative UI allows the developer to

conveniently create a user interface, giving great control over all elements of the screen.

Getting a grasp on how to think about declarative design was not intuitive at first, but

after a few days of coding in Flutter the declarative approach seems cleaner and easier

to use. Creating basic interfaces that looks good by default and serves the intended

purpose became easy and fast.

A few of the widgets in the application were created as custom classes and were able to

be reused. The code for these components could be reused in several different views by

sending in different data for them. With a good plan of the modularity of the views and

which components could better serve as being implemented as their own classes this

sped up the development and made the project uniform.

5.5 Testing

5.5.1 Interview data

Regression testing was something the lead developer spoke of as the most necessary

and important step during their development process in terms of testing. They had

separate employees working on quality assurance for verifying all the necessary

components. This involved manual testing like purchase flow and verification steps that

could be unique for a specific country etc. They checked this frequently and extensively

during every single code review.

5.5.2 Experiment data

During the experiment two of the three methods of testing, mentioned in the theoretical

framework were implemented in the Portfolio application developed by us. For the unit

testing to work, an external package called Mockito had to be used. The reason behind

this was because all the data in the Portfolio application was controlled by a fire-store

backend service. Therefore, to test the functionalities of the classes without depending

on a database connection, one can use mock objects to do the mocking of a real service.

34

The experience gathered was that this way of doing unit testing ended up being

complicated. Despite extensive research and troubleshooting work, the unit testing did

not end up working correctly. This was due to errors received when using Mockito that

permitted us from mocking a fully runnable test case.

The second implementation of a test scenario was a simple widget test. This part was

very intuitive and easy to understand, it was already prebuilt within Flutter and did not

rely on any external packages. The experience is that this part was well thought out

from the creators.

5.6 Deployment

5.6.1 Interview data

The Google developer expert and the lead developer both brought up the same

reasoning when talking about deploying a Flutter application. Shipping a Flutter project

for the first time or deploying a new version of it, results in all target devices getting

the same updates and features within the same time frame. The benefit of having a

unified deployment schedule between iOS, Android, and Web. leads to more

consistency between platforms.

5.7 Maintenance

5.7.1 Interview data

According to the Google developer expert one crucial part of developing with Flutter

is that a developer can build identical applications for multiple platforms with a single

codebase.

This allows a development team to build and maintain applications with just a single

developer. This is crucial when working with maintenance because bug fixes and new

features is created once and shipped to all platforms simultaneously

5.7.2 Experiment data

The experience when implementing small features or bug fixes, was that it is very

similar to the work being done in the coding and design phase. A feature or bug only

needs to be solved within the same codebase and all target platforms will receive the

update when the new version is launched.

35

6 Analysis

6.1 General

During the experiment phase a similar experience was shared by us regarding the

development process. Previous projects of similar size and scope as the one built during

the experiment have been created along the university period, but with different

languages and technologies. The impression here was that nothing during the actual

development process stood out while using Flutter to build applications. The same

backend project had to be used and built for Android, iOS, and web, respectively. The

same version control system had to be setup, and the entire agile process remained the

same as with any other native technology.

The only potential benefit covered regarding this, was that you get a unified user

experience across multiple devices with a single codebase that is described in the results

chapter for the software development process. As pointed out in the interview, most of

the code is the user interface, not the logic. Therefore, reusing code across several

platforms that are supposed to behave in the same way is a good approach.

All cross-platform SDKs and frameworks changes the software development process

by their nature of just having to create one codebase that can function on several target

devices running different operating systems.

Many of the benefits of using cross platform tools is due to having a single codebase.

Code only needs to be written once for both the user interface and the business logic.

Creating and planning the solution architecture can be achieved with just a single

instance, and only one codebase needs to be maintained.

6.2 Planning

One of the key points brought up from the result chapter regarding planning was about

gathering requirements. Both the Google developer expert and the lead developer spoke

of this process as something that is not affected by the type of software used by the

company. Requirement gathering highly depends on other reasons such as, company

structure and listening to stakeholders or clients.

A reason for this conclusion might come from the way both these developers worked

on a day-to-day basis. Both had an agile approach to their workflow and according to

literature, several agile methods exists that all have a phase/step for gathering

requirements. But the common factor among them is “to deliver software faster and

ensure that the software meets customer’s changing needs and expectations” (C.R &

Thomas, 2011).

36

This can, therefore, point towards the fact that the company formation and the structure

of how the workflow goes, plays a key role in how requirements are gathered and not

because they necessarily use Flutter or any other type of software product.

Another point brought up was in terms of forming teams. The results indicate that

forming teams is no different in Flutter compared to native development when speaking

purely of team size. The same product can still be developed, but the difference

becomes apparent during the process of dividing the work. In Flutter a team of the same

size can according to the Google developer expert, achieve the same results as with

native development but much faster. This could indicate that Flutter might be able to

achieve the same work with less developers compared to native. This can therefore save

time, money, or both by speeding up the workflow, and cutting the number of

developers needed.

The importance of being able to achieve more work with less developers is an important

factor for productivity. Previous research is all on board with less communication

overhead being a good thing. Data from International Software Benchmarking

Standards Group shows that three main factors impact software development

productivity, with team size being one of them (Rodríguez, Sicilia, & E. García, 2012).

In a paper written by Rodríguez et al (2012) the average team size of 9 or more people

leads to less productivity during development.

6.3 Coding

In a bachelor thesis written by Christine Björemo about app development in cross-

platform tools. An interview process with several senior and junior developers was

conducted. The overall experience gathered from this thesis points towards similar

benefits with Flutter. Hot reload and good documentation was pointed out as being two

of the biggest benefits for Flutter. The senior developer goes as far as saying that hot

reload was the single biggest contributor to a faster development time in Flutter

(Björemo, 2020).

This together with the lead developers’ positive feedback on hot reload and our own

experience with specifically hot reload and not hot restart, strengthens the verification

of hot reload being a beneficial tool during development.

Another bachelor thesis conducted by Lifh & Lidholm, (2018) looked at the portability

potential of taking an already existing fitness application and turn the preexisting

application into a single codebase using the cross-platform tool React Native. Despite

using another cross-platform tool the result in this paper correlates strongly with the

data collected from the interviews in this thesis. Everything ended up working with just

a single codebase except for handling Bluetooth as a background task on Android. (Lifh

& Lidholm, 2018). This led to different Bluetooth implementations between iOS and

37

Android which goes against the purpose of utilizing a cross-platform development tool

(Biørn-Hansen, 2019).

The verdict from the drawbacks collected in the interview, together with the similar

limitations with cross platform competitors’ points towards this being a limitation not

only in Flutter, but also for cross platform tools in general when trying to handle very

specific tasks that can differ between operating systems.

6.4 Design

Flutter has a complete set of unique widgets. With a UI being completely built up by

different widgets, this allows reuse of widgets and code and improves the time required

to develop apps (Björemo, 2020).This is especially true when creating your own custom

widgets where separation has been done of the UI and its business logic (Mehta, 2020).

This enables the widgets to be reused and customized without being duplicated in

development. The approach with widgets seems, both from the experiment and

secondary research, to make the code more purposeful and the reusability of code gets

higher and this speeds up the development.

With declarative UI the focus is on what should be accomplished rather than how it

shall be accomplished with imperative UI (Kayere, 2021). This approach abstracts away

details of a complex UI and allows the code to visually convey the structure of the UI.

Benefits of developing in a declarative way is that it improves the speed of

development, and it also reduces the lines of code needed and makes the code cleaner

(Guster, 2020).

All data gathered about declarative UI point toward it being the faster and cleaner way

of creating UIs. Despite the hurdles of getting into it for the first time as mentioned in

the results chapter.

For native mobile development declarative UI has been implemented by Apple for iOS

with SwiftUI as of 2019 (SwiftUI, n.d.) and with Jetpack Compose which is currently

in beta for Android (Jetpack compose | Android developers, n.d.).

The design and UI created in the experiment application, became almost identical and

the UX of the application on all the different platforms became uniformed without

needing additional work for specific platforms. There are still some variations of the

UX between the platforms that are caused by the native functionality of the different

operating systems. For example, the back button on OS-level is placed differently on a

browser vs an Android mobile device.

6.5 Test

The lead developer spoke of the importance with regression testing during the

development process. Testing in general seems to be an important step for any type of

38

software development. In fact, “50% of a project’s cost is spent on software testing and

80% of this amount is consumed by regression testing” (Kazmi, Jawawi, Mohamad, &

Ghani, 2017) Regression testing ensures that already tested implementations of a

feature does not get affected by the introduction of new changes within the system

(Kazmi, Jawawi, Mohamad, & Ghani, 2017).

The interview data points towards testing being a cost and time intensive process even

for them, despite utilizing Flutter. This points towards Flutter not being different in this

regard compared to other software development kits.

The experiences and struggles described in the results chapter regarding unit testing in

Flutter led us to analyze this section a bit more afterwards. Further research on unit

testing in general, did not portrait it like a tedious and difficult task to achieve on simple

logic. This led us to believe that the specific problem was something unique to the test

case built in this experiment and the Mockito package utilized to achieve unit testing.

6.6 Deployment

From the interviews an important point was raised regarding launching a new app as

well as updates for an application. Because a Flutter project is written with a single

codebase, all target devices can receive the same updates and features within the same

time frame.

This ensures that users of different platforms can experience the same updated version

of the application simultaneously, which gives a unified user experience. The benefits

of a shared UX design are talked about more in the design phase above.

6.7 Maintenance

The maintenance work gets the same general benefits as every other phase, due to

Flutter being a cross-platform development kit. A codebase can be maintained with just

a single developer, while bug-fixes and new features just needs to be implemented once.

Unless the bug is an OS specific bug, then in some cases it must be solved natively for

that target device. This requires experience of writing native code for the device.

As referenced in the problem statement, maintaining several codebases results in more

time when bug-fixing and implementing new features (Biørn-Hansen, 2019). This

further indicates that maintaining a Flutter application is easier and faster than native

applications with several codebases, at least for multi-platform solutions that do not

require specific native features.

39

7 Discussion

7.1 Result discussion

The purpose of this study was to evaluate Flutter in the context of the software

development process when creating multi-platform solutions. The study highlighted

some potential differences between working with Flutter vs conventional development.

The interviews with the Google developer expert and the lead developer gave valuable

insight into how the software development process is affected when Flutter is used. The

interviews were semi-structured which allowed the respondents to talk in an open and

unrestricted direction of what their thoughts were on Flutter, why they chose to use it,

and what its benefits, and drawbacks were.

Most of the answers to the questions received in the interview process was in relation

to how conventional developing differs. For instance, it is hard to talk about how

declarative UI is better, worse, or more suitable without implying how imperative UI

compares. Due to this we got a lot of insight into how the respondents worked with

Flutter and how that compares to traditional development.

The experiment of creating a multi-platform application in Flutter gave us firsthand

experience of working with Flutter. The work was documented in a diary that followed

a similar structure to the software development process, which aided the analyzing

process of the data.

The results of this study can inform of how some of the aspects of working with Flutter

can look like, a few differences as well as some benefits and drawbacks are examined

as well.

7.2 Limitations

Despite reaching out to approximately twenty companies and developers with the goal

of conducting interviews we only got 2 interviews. it is therefore a bit hard to generalize

the results from the interviews.

Secondary research was done with aim of giving more context of how the different

phases of the software development process can look like in Flutter which gives more

strength to the findings of the study.

The lack of studies where SDKs and frameworks have been qualitatively evaluated for

Flutter in the context of the software development process as well as evaluation of how

working in Flutter can look like, led us to find additional secondary sources besides

studies in the form of videos and articles of how Flutter development looks like. The

authors of these sources were verified experienced developers. The process of verifying

them was to both take into consideration the channel to host the articles as well as

looking up the authors on social medias as LinkedIn and Twitter. The criteria to be used

40

as a source was to have at least a few years in the industry as a developer and that the

host of the website is a credible outlet.

The experiment was conducted with the aim of gaining firsthand insight into the

software development process. But due to our inexperience with Flutter much of the

focus of the work was on the technical details of creating our application, instead of the

actual software development process. This made it difficult to draw detailed and

specific conclusions.

The observations from the experiment were also based on our own experience and

opinions which could make them biased as well as hard to replicate since it highly

depends on the individual

41

8 Conclusions and further research

8.1 Conclusions

The question that was answered in this study:

• How can a development process in Flutter look like?

This was answered through the form of collecting secondary research, interviewing

developers with experience in Flutter and an experiment phase of developing an

application Flutter.

The second question that was answered:

• What are the differences between using Flutter vs conventional development in

the context of a developer’s perspective?

This question was answered through analyzing the interview data, experiment data and

previous research to conclude how a development process can look like in Flutter. To

compare this with conventional development more secondary research was collected

and some of the more generalized interview data was analyzed for this part.

Some conclusions regarding Flutter vs conventional development can be established

through the results part laid out in chapter 5 together with secondary research in chapter

6.

The results point towards some general benefits of using Flutter when creating multi-

platform solutions. These benefits are only applicable when one is to create a product

that shares the same user interface and have no OS specific features that requires need

for deep integration into the targets device system.

Only having a single codebase seems to affect several phases of the development

process. The work being done is effectively cut down from three codebases to one.

Fewer developers can achieve the same work compared to conventional development.

This also means the developer does not need as many different areas of expertise to

multitask between.

Technical aspects of Flutter, like hot reload and declarative UI and good documentation

also seem to have a positive impact on the development process.

8.2 Implications

The results from the study indicate that using Flutter to develop multi-platform

solutions speeds up the development in almost every phase of the development process.

At least where the functionality does not rely too heavily upon the target device’s

hardware.

42

8.3 Further research

To give more legitimacy and validity to this study more research could be conducted

on how Flutters different components can affect the entire software development

process. A broader survey or more interviews with experienced and non-experienced

developers in Flutter could be conducted to gain more generalizable conclusions.

A deeper look into each part of the software development process would be interesting.

To describe and categorize the work being done within them.

43

9 References

Addy Osmani, I. G. (2019, September 23). Speed is now a landing page factor for

Google search and ads | Web. Retrieved from Google Developers:

https://developers.google.com/web/updates/2018/07/search-ads-speed

Apoorva Mishra, D. D. (2013). A comparative study of different software development

life cycle models in different scenarios. International Journal of Advance

Research in, 1(5), 64-69. doi: 10.17148/IJARCCE.2016.5246

Arroyo, P. P. (2020). PWA and TWA: Recent Development Trends. In V. D. Aguirre,

Computer Science – CACIC 2019 (pp. 205-214). Switzerland: Springer

International Publishing. doi:10.1007/978-3-030-48325-8_14

Aycock, J. (2003). A brief history of just-in-time. ACM Computing Surveys,, 35(2), 97–

113. doi:https://doi.org/10.1145/857076.857077

Bengtsson, M. (2016). How to plan and perform a qualitative study using content

analysis. Elsevier Ltd, 2, 8-14. doi:10.1016/j.npls.2016.01.001

Biørn-Hansen, A. G. (2019). A Survey and Taxonomy of Core Concepts and Research

Challenges in Cross-Platform Mobile Development. ACM computing surveys,

51(5), 1-34. doi:10.1145/3241739

Björemo, C. (2020). A qualitative study about Flutter. Karlstad : Karlstads Universitet

.

Boukhary, S. &. (2019). A Clean Approach to Flutter Development through the Flutter

Clean Architecture Package. 2019 International Conference on Computational

Science and Computational Intelligence (CSCI), (pp. 1115–1120.). Texas: IEEE

Electronic Library. doi:10.1109/CSCI49370.2019.00211

44

C.R, K., & Thomas, S. M. (2011). Requirement Gathering for small Projects using

Agile. Computational Science - New Dimensions & Perspectives, 122-128.

Carrillo-Tripp, M. A.-R.-R.-T.-R.-V.-Z.-V.-V.-R.-V.-V. (2018). HTMoL: full-stack

solution for remote access, visualization, and analysis of molecular dynamics

trajectory data. computer-aided molecular design, 869-876.

doi:10.1007/s10822-018-0141-y

Chadha, S. B. (2017). Facilitating the development of cross-platform software via

automated code synthesis from web-based programming resources. Computer

languages, systems & structures, 48, 3-19. doi:10.1016/j.cl.2016.08.005

Dart. (n.d.). Dart2js: Dart-to-JavaScript compiler. Retrieved 05 23, 2021, from Dart

programming language | Dart: https://dart.dev/tools/dart2js

Dart. (n.d.). Dartdevc: FAQ. Retrieved 05 23, 2021, from Dart programming language

| Dart: https://dart.dev/tools/dartdevc/faq

Dart. (n.d.). dartdevc: The Dart dev compiler. Retrieved 05 23, 2021, from

https://dart.dev/tools/dartdevc

Dart overview. (n.d.). Retrieved May 08, 2021, from Dart: https://dart.dev/overview

Dawson, C. &. (2014). Software Development Process Models: A Technique for

Evaluation and Decision-Making: Software Development Process Models.

Knowledge and Process Management, 21(1), 42–53. doi:10.1002/kpm.1419

Dhillion, S. M. (2015). An evaluation framework for cross‐platform mobile application

development tools. Software: Practice and Experience, 1331-1357.

doi:10.1002/spe.2286

Flutter . (2020, March 19). web. Retrieved from Flutter: https://flutter.dev/web

45

Flutter. (2021, 02 27). Flutter. Retrieved from FAQ:

https://flutter.dev/docs/resources/faq

Flutter. (n.d.). Building a web application with flutter. Retrieved 05 23, 2021, from

Flutter - Beautiful native apps in record time: https://flutter.dev/docs/get-

started/web

Flutter Team. (2019, May 7). Flutter: A portable UI framework for mobile, web,

embedded, and desktop. Retrieved from Google Developers Blog:

https://developers.googleblog.com/2019/05/Flutter-io19.html

Flutter. (n.d.). Testing flutter apps. Retrieved 05 23, 2021, from Flutter - Beautiful

native apps in record time: https://flutter.dev/docs/testing

Flutter. (n.d.). Web renderers. Retrieved 05 23, 2021, from Flutter - Beautiful native

apps in record time: https://flutter.dev/docs/development/tools/web-renderers

Guster. (2020, 05 29). Declarative UI rolling into Mobile 2020 and beyond. Retrieved

05 23, 2021, from Medium: https://medium.com/@gusterwoei/declarative-ui-

rolling-into-mobile-and-beyond-966f49d055f4

Hammond, M. W. (2020). Research Methods: The Key Concepts. (2. edition, Ed.)

London: Taylor and Francis.

HTTP Archive. (2021, April 30). Retrieved from HTTP archive: Page weight:

https://httparchive.org/reports/page-

weight?start=2018_01_01&end=latest&view=list

Jetpack compose | Android developers. (n.d.). Retrieved 05 30, 2021, from Android

Developers: https://developer.android.com/jetpack/compose

46

Kayere, P. (2021, 04 19). Declarative vs Imperative UI in Android. Retrieved 05 23,

2021, from Section: https://www.section.io/engineering-education/declarative-

vs-imperative-ui-android/

Kazmi, R., Jawawi, D., Mohamad, R., & Ghani, I. (2017). Effective Regression Test

Case Selection: A Systematic Literature Review. ACM Computing Surveys,

50(2), 1–32. doi:https://doi.org/10.1145/3057269

Lifh, O., & Lidholm, P. (2018). Recreating a Native Application in React Native -

Feasibility of Using React Native With Bluetooth & Background Processing.

Karlskrona: Faculty of Computing Blekinge Institute of Technology.

Manhas, J. (2014). Comparative Study of Website Page Size as Design Issue in Various

Websites. International Journal of Information Engineering and Electronic

Business, 6(6), 33-39. doi:10.5815/ijieeb.2014.06.04

Mehta, A. (2020, 05 22). Flutter: Reusable Widgets. Retrieved 05 23, 2021, from

Medium: https://medium.com/flutter-community/flutter-reusable-widgets-

38e270846d59

Mercado, I. M. (2016). The impact of cross-platform development approaches for

mobile applications from the user's perspective. WAMA 2016: Proceedings of

the International Workshop on App Market Analytics, 43-49.

doi:10.1145/2993259.2993268

Mockito | Dart package. (n.d.). Retrieved 05 23, 2021, from Dart packages:

https://pub.dev/packages/mockito

Pham, T. (. (2019, October 16). 6 stages for software development procedure you need

to know. Retrieved June 8, 2021, from Saigon Technology - 6 Stages for

Software Development Procedure You Need to Know:

47

https://saigontechnology.com/blog/6-stages-for-software-development-

procedure-you-need-to-know

Poeplau, S. &. (2020). Symbolic execution with SymCC: Don’t interpret, compile!

2020 USENIX Security Symposium, 181-198.

Rodríguez, D., Sicilia, M., & E. García, R. H. (2012). Empirical findings on team size

and productivity in software development. Journal of Systems and Software,

85(3), 562-570. doi:https://doi.org/10.1016/j.jss.2011.09.009.

Ruparelia, N. (2010). Software development lifecycle models. ACM SIGSOFT

Software Engineering Notes, 35(3), 8-13. doi:10.1145/1764810.1764814

Saldaña, J. (2011). Fundamentals of qualitative research. New York : Oxford

University Press.

Sauma, R., & Ziai, M. (2020). Komparativ studie mellan React-Native och Flutter med

avseende på utvecklarens produktivitet. Bachelor Thesis, Jönköping University,

Computer Science and Informatics , Jönköping. Retrieved from

http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-49913

Skia. (n.d.). CanvasKit - Skia + WebAssembly. Retrieved 05 23, 2021, from Skia:

https://skia.org/docs/user/modules/canvaskit/

Skia. (n.d.). Documentation. Retrieved 05 23, 2021, from Skia: https://skia.org/docs/

Solovei, V. O. (2018). THE DIFFERENCE BETWEEN DEVELOPING SINGLE

PAGE APPLICATION AND TRADITIONAL WEB APPLICATION BASED

ON MECHATRONICS ROBOT LABORATORY ONAFT APPLICATION.

Automatizácia Tehnologičeskih i Biznes-Processov, 10(1).

doi:10.15673/atbp.v10i1.874

48

Stewart, D. W. (1993). Secondary research information sources and methods. (2nd ed

ed.). London: SAGE Publications, Inc.,.

SwiftUI. (n.d.). Retrieved 05 30, 2021, from Apple Developer:

https://developer.apple.com/xcode/swiftui/

49

10 Appendixes

10.1 Appendix 1 (Email sent out to participants)

50

10.2 Appendix 2 (English version of the interview process)

51

10.3 Appendix 3 (Interview with Google developer expert)

52

53

54

55

56

57

10.4 Appendix 4 (Interview with lead developer)

58

59

60

61

62

63

64

