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Abstract  

Background: There is important interplay between epigenetic factors and body weight, and previous 

work has identified ten sites where DNA methylation is robustly associated with body mass index (BMI) 

cross-sectionally. However, interpretation of the associations is complicated by the substantial changes 

in BMI often occurring in late-life, and the fact that methylation is often driven by genetic variation. This 

study therefore investigated the longitudinal association between these ten sites and BMI from midlife 

to late-life, and whether associations persist after controlling for genetic factors. 

Methods: We used data from 535 individuals (mean age 68) in the Swedish Adoption/Twin Study of 

Aging (SATSA) with longitudinal measures of both DNA methylation from blood samples and BMI, 

spanning up to 20 years. Methylation levels were measured with the Infinium Human Methylation 450K 

or Infinium MethylationEpic array, with seven of the ten sites passing quality control. Latent growth 

curve models were applied to investigate longitudinal associations between methylation and BMI, and 

between-within models to study associations within twin pairs, thus adjusting for genetic factors. 

Results: Baseline DNA methylation levels at five of the seven sites were associated with BMI level at age 

65 (cg00574958 [CPT1A]; cg11024682 [SREBF1]) and/or change (cg06192883 [MYO5C]; cg06946797 

[RMI2]; cg08857797 [VPS25]). For four of the five sites, the associations remained comparable within 

twin pairs. However, the effects of cg06192883 were substantially attenuated within pairs. No change in 

DNA methylation was detected for any of the seven evaluated sites. 

Conclusion: Five of the seven sites investigated were associated with late-life level and/or change in BMI. 

The effects for four of the sites remained similar when examined within twin pairs, indicating that the 

associations are mainly environmentally driven. However, the substantial attenuation in the association 

between cg06192883 and late-life BMI within pairs points to the importance of genetic factors in this 

association. 
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Introduction 

Body weight is subject to change throughout different time-periods of our lives. While most individuals 

gain weight from young adulthood to late midlife, there is greater heterogeneity in old age, where some 

continue to gain weight, some maintain a stable weight, and a substantial proportion of older individuals 

lose weight1. As changes in weight in old age may be important markers of underlying disease and 

survival2, 3, it is important to unravel the etiology of these changes.  

Genetic factors are important determinants of body composition, and the heritability of body mass index 

(BMI) has been estimated to 45-85% in twin studies4. However, several studies have shown that the 

heritability of BMI as well as the genetic variants associated differ across age groups4-6. Epigenetic 

mechanisms are important players in the biological aging process and may be a mechanism through 

which gene-environment interactions work7. DNA methylation refers to addition of a methyl group to a 

cytosine located next to a guanine in the genome, in the context of a dinucleotide called a CpG site8. 

Promoter regions are often rich in CpG sites, where DNA methylation inhibits binding of transcription 

factors and hence downregulates gene expression. Epigenome-wide association studies (EWASs), where 

methylation at CpG sites across the entire genome are analyzed, have identified several associations 

between leukocyte DNA methylation and BMI or obesity9-14. A comparison of findings from the three 

largest EWASs9-11 revealed ten sites robustly associated with BMI in all three studies15. Seven of the ten 

sites have also been identified in associations with other factors related to the metabolic syndrome, such 

as lipid fractions, glucose levels, and inflammation15, further highlighting the importance of the sites. 

Two of the EWASs investigated the association between methylation and change in BMI by modelling the 

difference in BMI between two time points. One of the studies evaluated change in BMI from age 25 to 

study baseline at mean age 56 9, and the other change in BMI and in DNA methylation over seven years 

from mean age 61 at baseline11.  All three studies accounted for genetic factors by studying associations 

between nearby cis-methylation quantitative trait loci (meQTLs) and methylation levels. However, many 
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meQTLs influence methylation through trans effects, i.e. at sites further away in the genome16, 

complicating interpretations of the findings. None of the previous studies focused specifically on changes 

in BMI in late-life and very late-life, and with substantial changes occurring in both BMI1 and 

methylation7 during aging, this relationship requires specific attention.  

The objective of this study was to thoroughly investigate the longitudinal association between 

methylation at these ten CpG sites and BMI during late-life, by using multiple measures of BMI and DNA 

methylation spanning up to 20 years while accounting for familial factors (such as meQTLs) through twin 

designs. Specifically, we investigated: 1) whether DNA methylation at these CpG sites are also associated 

with the non-linear longitudinal changes in BMI during late-life, 2) whether levels in DNA methylation at 

these sites change during late-life, and if so whether those changes are associated with changes in BMI, 

and 3) whether the associations remain when comparing within twin pairs, hence controlling for shared 

genetic and other familial factors. By focusing on methylation at sites robustly associated with BMI 

across adulthood and investigating associations with both level and change in BMI during late-life, we 

thus aimed to promote a better understanding of whether the same methylomic factors are associated 

with changes in BMI during late-life as for level of BMI earlier in life. 

 

Material and methods 

Study population 

The study population originated from the Swedish Adoption/Twin Study of Aging (SATSA)17, a sub-study 

of the Swedish Twin Registry (STR)18. SATSA is a longitudinal study of same-sex twin pairs with up to 10 

in-person testing occasions between 1984 and 2014, consisting of a health examination, cognitive tests, 

and collection of blood samples. In total, 859 individuals participated in at least one testing occasion, out 

of whom 535 had information on DNA methylation and hence were included in this study. Baseline was 
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set at first available blood sample with methylation information. All participants provided informed 

consent, and the study was approved by the Regional Ethics board at Karolinska Institutet, Stockholm. 

DNA methylation measurements and pre-processing 

DNA methylation was analyzed in blood samples collected during the third (1992-1994), fifth (1999-

2002), sixth (2002-2005), eighth (2008-2010), ninth (2010-2012), and tenth (2012-2014) in-person testing 

occasions. Up to six measurements were thus available from the 535 individuals, leading to a total of 

1402 samples. Table S2 shows the number of samples with methylation information and their mean age 

at each in-person testing occasion. 

DNA was extracted and bisulfite converted using EZ-96 DNA MagPrep methylation kit (Zymo Research 

Corp., Orange, CA, USA) according to the manufacturer’s protocol. The DNA was then hybridized onto 

the Infinium Human Methylation 450K Bead Chip (n=385), or the Infinium MethylationEPIC BeadChip 

(n=150, both from Illumina Inc., San Diego, CA, USA). The obtained methylation data then went through 

the following rigorous multi-step quality control pipeline: 1) removal of samples with poor correlation to 

genotype controls; 2) removal of samples with the wrong predicted sex based on signal ratio of probes 

on sex chromosomes; 3) removal of probes overlapping a SNP site; 4) removal of probes residing on sex 

chromosomes; 5) removal of probes with detection p-value above 0.05. Seven out of the ten CpG sites of 

interest remained after these quality control steps (cg06192883, cg11024682, cg00574958, cg08857797, 

cg06946797, cg13123009, and cg09664445). Processing was done in R with background correction with 

methylumi.noob19, and normalization with wateRmelon.dasen20. Cell counts were adjusted for using the 

Houseman method 21, and batch effects using the ComBat function in the sva package 22. Methylation 

levels at each of the seven sites were transformed to M-values by calculating the logit2-transformed 

ratios of methylated to total (methylated plus unmethylated) probe intensity23. The M-values were then 

standardized to mean zero and standard deviation of one for easier interpretation. 
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BMI measurements 

The participant’s height and weight were measured at each testing occasion by trained research nurses, 

and BMI was calculated as kg/m2. All available BMI measurements from the first in-person testing 

occasion with methylation information and onwards were included. Table S2 shows the number of 

samples with BMI measurement and their mean age at each occasion. 

Covariates  

Smoking status and diagnosis of type 2 diabetes was self-reported at the testing occasions. Smoking was 

categorized into current smoking or not smoking at baseline. Type 2 diabetes was categorized into 

lifetime presence or absence of disease. Blood levels of glucose, total cholesterol, and triglycerides were 

measured at each testing occasion together with fasting status, and levels at first blood sample with 

methylation data were included in the current study.  

Statistical analyses 

All analyses were performed in R version 3.5.2. To investigate the temporal association between DNA 

methylation at the sites of relevance and BMI, the following three steps were taken.  

1. Study the cross-sectional association between DNA methylation and BMI at baseline 

The cross-sectional association between baseline measures of methylation levels at each CpG site and 

BMI was analyzed first using linear regression in the full sample, with robust sandwich estimators to 

account for the relatedness between twins.  

To obtain estimates adjusted for genetic factors, we applied between-within analyses24. Here, the 

between-pair estimate examines the exposure-outcome association across all twin pairs and represents 

the average effect in the population. The within-pair estimate examines the exposure-outcome 

association within twin pairs, and thus represents the effect not attributable to shared genetic and other 
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familial factors. This was done using linear mixed models (lme4 package) with both the twin-pair mean 

methylation (between-pair effect) and individual deviation from the twin-pair mean (within-pair effect) 

as predictors of BMI. Individual IDs nested within twin pair IDs were included as random effects.  

All models were adjusted for age, sex, smoking status at baseline, and type of methylation array 

(Infinium Human Methylation 450K Bead Chip or Infinium MethylationEPIC BeadChip).  

To study potential environmental drivers of the associations, mediation analyses were carried out 

investigating the effect of type 2 diabetes, blood glucose, total cholesterol, and triglycerides. This was 

done by 1) modelling the effect of DNA methylation on BMI, 2) modelling the effect of DNA methylation 

on the mediator, and 3) modelling the effect of DNA methylation on BMI, adjusting for the mediator. The 

significance of the mediation was tested through bootstrapping with 1000 repetitions (mediate 

package). All models, except that adjusting for type 2 diabetes, were also adjusted for fasting status at 

time of blood sample. All were adjusted for age, sex, smoking and type of methylation array, as above. 

2. Study the association between baseline DNA methylation and longitudinal change in BMI 

We investigated if baseline DNA methylation at each CpG site was associated with longitudinal change in 

BMI by applying latent growth curve models25 with age as the time scale. The models included fixed 

effects, linear, and quadratic trends, with age centered at 65 years (as a turning point in the BMI curve 

has been shown to occur at age 651). Methylation level at baseline was included as a fixed effect on BMI 

at the intercept (reflecting BMI at the centering age of 65), and in interaction with linear and quadratic 

age to investigate the effect of baseline methylation levels on longitudinal BMI trajectory features. 

Individuals nested within twin pairs were modelled as random effects to account for relatedness of 

twins.  
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To adjust for shared familial factors, between-within analyses were applied by modelling the baseline 

twin-pair mean methylation level (between-pair effect) and individual deviation from the twin pair mean 

(within-pair effect) as fixed effects and in interaction with linear and quadratic age.  

Sex, smoking status at baseline, and methylation array were included as fixed effects in all the models 

described above. To deal with convergence issues, the twin pair ID was omitted from the random 

quadratic age effect in latent growth curve models of cg06192883 and cg11024682. 

3. Explore characteristics of the CpG sites  

 To identify late-life changes in DNA methylation levels at the seven sites of interest, latent growth curve 

models were applied, with age centered at 65. The model included sex, smoking at the time of blood 

sample, and methylation array as fixed effects on methylation levels at the intercept age, and a linear 

age effect was subsequently added to the model. Individual ID nested within twin pair ID was included as 

a random effect. Likelihood ratio tests were applied to investigate the difference in model fit when 

introducing the linear growth term, i.e. the evidence of change in methylation levels over time. 

In order to identify evidence of genetic factors driving methylation levels at the seven sites, twin-pair 

correlations were first calculated for monozygotic and dizygotic twin pairs separately, and the estimates 

compared. The Falconer heritability, a crude measure of the unadjusted broad-sense heritability, was 

calculated by doubling the difference between the monozygotic and dizygotic twin-pair correlations26. To 

identify cis-meQTLs (within 1 million base pairs) driving methylation levels at these sites, results were 

extracted from a previous study by Wang et al.27, specifically modelling cis-meQTLs in this sample. To 

confirm the presence or absence of cis-meQTLs and to identify trans-meQTLs, lookup was performed in 

the mQTL database28, filtering on middle-age individuals. 

For all models, nominal significance level was set at the α=0.05 level and a conservative Bonferroni 

corrected significance level adjusted for the seven sites tested at α=0.007 (0.05/7).  
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Results 

Study population 

Among the 535 individuals in the sample, 313 (58.5%) were women and 222 (41.5%) were men. At 

baseline (first blood sample collection), mean age was 68.2 years (SD=9.5, range 48-94), and mean BMI 

was 26.4 (SD=4.2, range 17.8-50.1). The average follow-up time for BMI measurements was 9.7 years 

(SD=6.9, range 0-20.6), during which BMI was measured on average 4.0 times (SD=2.3, range 1-8). A total 

of 161 individuals had BMI measures both before and after age 65. The average follow-up time for 

methylation samples was 8.4 years (SD=6.8, range 0-20.2), with a mean of 2.6 samples per individual 

(SD=1.3, range 1-6). Ninety-five individuals were smokers at baseline (17.8%). The sample included 238 

complete twin pairs, out of which 82 were monozygotic pairs and 156 were dizygotic.  

The cross-sectional association between DNA methylation and BMI at baseline 

At baseline, linear regression models demonstrated that DNA methylation at cg06192883 and 

cg11024682 were significantly associated with BMI in the full sample after conservative Bonferroni 

correction (Table 1). When comparing within twin pairs, the effect of cg06192883 was substantially 

reduced and the association was no longer significant (Table 1). When DZ and MZ pairs were analyzed 

separately, the association was similar to that in the full sample within DZ twins (β=0.71, p=0.03), but 

was substantially diminished within MZ twin pairs (β=-0.18, p=0.56, Table S3). For cg11024682, the effect 

size within twin pairs remained similar to that of the full sample and the association was nominally 

significant (Table 1).  

The association between BMI, cg00574958 and cg08857797 reached nominal significance in the full 

sample, with comparable estimates within twin pairs (Table 1). None of the remaining three CpG sites 

(cg06946797, cg13123009, and cg09664445) were associated with BMI at baseline. Compared to the 
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three previous studies15, all estimates were in the same direction, except cg13123009 which had an 

effect size very close to zero. 

Follow-up analyses studying mediating effects of type 2 diabetes, blood glucose levels, total cholesterol, 

and triglycerides revealed that the associations with both cg06192883 and cg11024682 were significantly 

mediated through blood glucose levels (p=0.006 and p=0.01, respectively) and triglycerides (p<0.001 and 

p=0.006, respectively, Table S5). Triglycerides also mediated the association between cg00574958 and 

BMI (p=0.002). No mediating effects were found for cg08857797. 

Baseline DNA methylation and longitudinal change in BMI 

Figure 1 visualizes the longitudinal change in BMI, stratified by tertiles of methylation levels at each of 

the seven sites. DNA methylation at cg06192883 was significantly associated with a higher BMI at age 65 

as well as with linear and quadratic change in BMI (Figure 1). Again, the effect was substantially reduced 

when comparing within twin pairs (Table 2). DNA methylation at cg11024682 was significantly associated 

with higher BMI at the intercept age of 65 but not with change in BMI (Figure 1), and as in the baseline 

models the effect size remained similar when comparing within twin pairs (Table 2).  

Nominally significant associations were found between cg00574958 and lower BMI at age 65, 

cg08857797 with higher BMI at age 65 and a steeper linear decline, and for cg06946797 and lessened 

quadratic change in BMI (Figure 1). When comparing within twin pairs, the effects of cg00574958 and 

cg06946797 were similar to that in the full sample (Table 2). The within-pair effect of cg08857797 was 

similar for BMI at the intercept age, but stronger for change in BMI. 

Characteristics of the CpG sites 

While there was significant linear change in the methylation levels at cg11024682, cg00574958, and 

cg09664445, the estimates for the linear slope were negligible (β=-0.01 for all) and the random slope did 
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not significantly improve model fit (Table S4). Hence, investigations of change in methylation at these 

sites would not be of relevance, and therefore no further models of longitudinal change in DNA 

methylation in relation to BMI were applied.  

Comparison of twin-pair correlations between monozygotic and dizygotic twin pairs indicated a broad-

sense heritability of 13-21 % for cg06192883, cg08857797, cg13123009, and cg09664445 (Table S6). 

cg06946797 showed a high heritability estimate of 54%, and the correlation pattern indicates the 

presence of dominance effects. Heritability could not be estimated for cg11024682 as the twin-pair 

correlation was higher among dizygotic twins than among monozygotic twins. This is likely a result of 

imprecision in the estimate, as indicated by the wide confidence intervals. For cg06192883 and 

cg13123009, the twin-pair correlation among monozygotic pairs exceeded the heritability estimate, 

indicating presence of additional familial factors (shared environment). No evidence of cis-meQTLs 

affecting any of the sites were identified in this sample. Lookup in the mQTL database28 only revealed 

trans-meQTL for cg09664445 (rs13182794 and rs115422955, both located in the same region on 

chromosome 5), which was not associated with BMI in any of the analyses. Further investigation of 

meQTLs were therefore not carried out.  

 

Discussion 

Out of the seven CpG sites analyzed, all robustly associated with BMI in the three largest EWASs to date, 

we demonstrated that five are also of importance to late-life BMI level (cg11024682 and cg00574958) 

and/or change in BMI (cg06192883, cg08857797, and cg06946797). Among four of the five sites, the 

associations remained significant within twin pairs. However, for cg06192883, which was strongly 

associated with both higher BMI level at age 65 and with steeper decline in BMI, the associations were 

substantially reduced within twin pairs, indicating they are largely driven by genetic or other factors 
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shared within families. No evidence of longitudinal change in methylation levels was detected for any of 

the CpG sites, and therefore no tests of change in methylation as a function of BMI were carried out. 

The three EWASs included in the review by Bell15 were all of substantial size, with both discovery and 

replication samples of more than 2000 individuals9-11. Since then, another three EWASs of BMI of 

substantial size have been published, but based on smaller samples12-14. Interestingly, three of the ten 

sites were also identified in each of these studies, namely cg11024682, cg00574958, and cg06500161. 

Unfortunately, the third site was lost during quality control in the current study, but the other two were 

both associated with BMI at age 65, cg11024682 being a top hit remaining significantly associated with 

higher BMI at age 65 after conservative Bonferroni correction. Further strengthening the importance of 

the three sites, one of the earlier EWASs identified them in three-way interactions between BMI, DNA 

methylation, and gene expression10. The same study demonstrated a causal effect of cg11024682 on 

BMI, and a causal effect of BMI on cg06500161. The reason cg06192883 was not identified in these more 

recent EWASs may be that the association is age-dependent, as the site was strongly associated not only 

with level but also with change in BMI during late-life in this study.  The site is located within the myosin 

5C (MYO5C) gene, coding for an intracellular transporter protein mainly expressed in glandular tissues29. 

Little is known of the biological mechanisms around MYO5C, but as a key protein in intracellular 

transport in pancreatic cells, it has been implicated in insulin excretion30, possibly explaining its 

association with BMI. Moreover, methylation at the same site has been found to be associated with 

levels of the inflammatory marker C-reactive protein (CRP) in blood, plausibly stemming from the chronic 

inflammation associated with adiposity15. Our follow-up analyses indicated that the association between 

cg06192883 and BMI may be mediated through blood glucose levels and triglycerides. The other four 

sites have all been identified in associations with lipid fractions15. Notably, cg11024682 resides in the 

Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) gene, which is involved in energy 

homeostasis and lipid metabolism10. SREBF1 has been identified in EWASs of type-2 diabetes31, and both 
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SREFB1 and CPT1A (where cg00574958 resides) in EWASs of dyslipidemia32. In line with these findings, 

the current study indicated that blood glucose levels may mediate the association between cg11024682 

and BMI, and that triglyceride levels may mediate the associations with both cg11024682 and 

cg00574958.  

One recent study utilized twin data to assess the bi-directional causality between methylation and BMI33. 

They could thereby confirm the results from Wahl et al.11, who through Mendelian randomization 

methods showed that, for a majority of the CpG sites investigated, BMI causally influences methylation 

levels rather than the opposite. The associations between baseline DNA methylation levels and 

prospective longitudinal change in BMI might be interpreted as evidence of methylation driving late-life 

changes in BMI. However, as both BMI and methylation are complex biological mechanisms, influenced 

by a variety of not only genetic factors but also environmental factors throughout life, any 

interpretations of directionality should be made with caution. The lack of change in methylation levels in 

the current study does not necessary speak against BMI causally influencing methylation at these sites. It 

is plausible that past levels of BMI levels does determine the methylation levels at these sites, and that 

they then remain stable throughout late-life. Moreover, obesity is one of the major players in the 

metabolic syndrome, defined as having a combination of three or more of the factors high blood 

pressure, abdominal obesity, high triglyceride levels, low levels of high-density lipoproteins, and elevated 

fasting blood glucose34. The metabolic syndrome increases the risk of several chronic diseases, such as 

cardiovascular disease and type 2 diabetes, and it is plausible that this complex syndrome influences 

blood methylation levels in a long-term manner. Further work on the topic is warranted to address this 

complex issue.  

While the moderate sample size is a limitation, this study is based on a well-established twin-cohort with 

longitudinal measures of both BMI and methylation levels. Much evidence indicates that the causes and 

consequences of BMI in late-life may differ from those in midlife, and the factors influencing late-life 
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changes in BMI are poorly understood. It would hence be plausible that the associations between DNA 

methylation and BMI are age specific. By using BMI measured at several time points throughout late-life 

we could further investigate associations between DNA methylation and both level and changes in BMI 

from midlife to late-life. Studying older individuals does entail methodological considerations, such as 

attrition rate and survival bias35. Studies including older individuals are always limited in the sense that 

there is a selection bias for healthier individuals, and our sample with a mean age of 68 years at baseline 

is no exception. As seen in Table S2, the increase in mean age across testing occasion does not 

correspond to the number of years between waves, indicating that older individuals drop out to a higher 

extent than the younger individuals. The attrition rates between the last IPTs is low, around 5%, and 

predominantly due to mortality or poor health.  The selection bias based on BMI are most often in favor 

for those with higher BMI in late-life compared to those with normal BMI, due to the previously 

mentioned obesity paradox. However, it is important to consider that the selected CpG sites are mainly 

identified in younger samples, and it is possible that individuals who were overweight or obese in midlife 

never entered the study, as they might have had worse health earlier in life. This might reduce our ability 

to identify true effects. The interplay between genetic variants and methylation adds a substantial 

complexity level to epigenetic studies. Almost 20% of the variance in DNA methylation in blood is driven 

by genetic factors, the majority acting through trans effects where the controlling genetic variant resides 

distant to the CpG site in the genome28. Despite indications of heritable influences on methylation at 

several sites investigated in this study only one meQTL could be identified, further highlighting this issue. 

The twin design is hence highly valuable in methylation studies, especially in monozygotic twins where it 

offers complete adjustment for genetic influences36. However, twin designs also have caveats worth 

considering. Although within-pair estimates are naturally adjusted for factors shared between the twins, 

the estimates may still be affected by bias from non-shared confounders and measurement errors37. 

While DNA methylation levels in adipose tissue certainly would have been of interest to study, blood 
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samples have the advantage, in addition to being easier to access, that it is a metabolically active tissue. 

It hence has important roles in the inflammatory and vascular processes associated with adiposity. 

Unfortunately, cell type composition was not available, but adjusted for using the well-established 

Houseman method21. While the method is widely used and works very well in blood samples, it is 

important to note that the method only corrects for the major cell types present in whole blood and it is 

possible that effects stemming from differences in smaller cell type fractions remain38. 

In conclusion, five of the seven sites investigated were associated with levels and/or change in BMI 

during the second half of the life span. The effect estimates remained similar when comparing within 

twin pairs for four of the sites, indicating the associations are mainly driven by environmental factors. 

However, the association between cg06192883 and late-life BMI was substantially reduced within twin 

pairs, pointing to the importance of familial factors in this association.  
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Figure 1: The association between baseline DNA methylation and longitudinal trajectories of body mass index 

Predicted values from latent growth curve models of longitudinal change in body mass index, stratified into tertiles of DNA methylation level at 

baseline at each of the seven CpG sites. Beta values with 95% CI and p-values are presented for the effect of DNA methylation at baseline on 

body mass index level at the intercept (age 65), and linear and quadratic change. Models are adjusted for methylation array, sex, and smoking. 



22 
 

Table 1: Association between DNA methylation and body mass index at baseline in the total sample, and between / within twin pairs  

     

  Total_sample Between-pair effect Within-pair effect 

  β 95% CI P-value β 95% CI P-value β 95% CI P-value 

cg06192883 0.72 0.37,1.07 <0.001** 0.83 0.35,1.31 <0.001** 0.40 -0.06,0.86 0.09 

cg11024682 0.48 0.15,0.82 0.0047** 0.47 -0.01,0.95 0.053 0.50 0.08,0.93 0.021* 

cg00574958  -0.37 -0.72,-0.03 0.035*  -0.44 -0.97,0.10 0.11  -0.24 -0.65,0.18 0.26 

cg08857797 0.36 0.01,0.70 0.041* 0.40 -0.10,0.90 0.113 0.40 -0.02,0.83 0.064 

cg06946797  -0.07 -0.39,0.25 0.67  -0.34 -0.84,0.15 0.173 0.43 -0.01,0.86 0.055 

cg13123009 0.00 -0.36,0.36 1 0.01 -0.47,0.49 0.97  -0.02 -0.49,0.45 0.94 

cg09664445 0.22 -0.15,0.59 0.25 0.25 -0.25,0.76 0.33 0.15 -0.26,0.55 0.47 

 

Beta values, 95% confidence intervals, and p-values of the association between DNA methylation at seven CpG sites and body mass index. Linear 

regression was applied to the total sample, and between-within models to compare estimates between and within twin pairs. All models are 

adjusted for age, sex, smoking, and methylation array. *Significance at the α=0.05 level. ** Significance after conservative Bonferroni correction 

at α=0.007          
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Table 2: Between-within models of baseline DNA methylation and longitudinal trajectories of body 

mass index       

  Between-pair effect Within-pair effect 
  β(CpG) 95% CI P-val β(CpG) 95% CI P-val 

cg06192883             

BMI level (age 65) 0.88 0.36,1.40 <0.001** 0.40 -0.10,0.91 0.12 

Linear change in BMI  -0.63 -0.92,-0.34 <0.001**  -0.28 -0.58,0.02 0.07 

Quadratic change in BMI 0.24 0.09,0.38 0.001**  -0.04 -0.23,0.15 0.68 

cg11024682          

BMI level (age 65) 0.50 -0.02,1.02 0.06 0.49 0.01,0.96 0.05* 

Linear change in BMI  -0.24 -0.52,0.05 0.10  -0.02 -0.34,0.29 0.88 

Quadratic change in BMI 0.08 -0.07,0.22 0.30 0.03 -0.15,0.22 0.72 

cg00574958          

BMI level (age 65)  -0.52 -1.09,0.06 0.08  -0.37 -0.81,0.07 0.10 

Linear change in BMI 0.18 -0.16,0.52 0.30  -0.06 -0.35,0.22 0.66 

Quadratic change in BMI 0.06 -0.11,0.23 0.50 0.12 -0.04,0.29 0.15 

cg08857797          

BMI level (age 65) 0.43 -0.11,0.98 0.12 0.40 -0.06,0.87 0.09 

Linear change in BMI  -0.08 -0.41,0.25 0.63  -0.43 -0.74,-0.13 0.006** 

Quadratic change in BMI 0.01 -0.15,0.17 0.89 0.23 0.05,0.41 0.01* 

cg06946797          

BMI level (age 65)  -0.47 -1.00,0.06 0.08 0.43 -0.05,0.91 0.08 

Linear change in BMI 0.07 -0.24,0.38 0.66  -0.25 -0.60,0.10 0.16 

Quadratic change in BMI 0.10 -0.06,0.26 0.23 0.17 -0.01,0.36 0.06 

cg13123009          

BMI level (age 65)  -0.12 -0.67,0.42 0.65  -0.05 -0.56,0.47 0.86 

Linear change in BMI  -0.03 -0.35,0.29 0.86  -0.14 -0.50,0.21 0.42 

Quadratic change in BMI 0.07 -0.07,0.22 0.30 0.13 -0.05,0.32 0.16 

cg09664445          

BMI level (age 65) 0.29 -0.26,0.83 0.30 0.25 -0.19,0.69 0.27 

Linear change in BMI  -0.08 -0.39,0.23 0.60  -0.14 -0.47,0.19 0.40 

Quadratic change in BMI 0.05 -0.10,0.20 0.50  -0.06 -0.24,0.12 0.54 
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Beta values, 95% confidence intervals, and p-values for the estimates of baseline DNA methylation on 

BMI at the intercept (age 65), linear change, and quadratic change in BMI. The between-pair estimate 

represents the average effect in the population, and the within-pair estimate the effect not attributable 

to shared genetic and other familial factors. Models are adjusted for methylation array, sex, and 

smoking. *Significance at the α=0.05 level. **Significance after conservative Bonferroni correction at 

α=0.007.        



 

Supplementary information 

Table S1: Information about each of the seven CpG sites from the Illumina annotation file 

IlumnID CHR MAPINFO UCSC_RefGene_Name 

cg06192883 15 52554171 MYO5C 

cg11024682 17 17730094 SREBF1;SREBF1 

cg00574958 11 68607622 CPT1A;CPT1A 

cg08857797 17 40927699 VPS25 

cg06946797 16 11422409  

cg13123009 6 31681882 LY6G6E;LY6G6D;LY6G6E 

cg09664445 17 2612406 KIAA0664 

 

Table S2: Number of samples and mean age at each in-person testing occasion 

 Individuals with BMI data Individuals with methylation data 

Testing occasion N Mean age N Mean age 

IPT3 (1992-1994) 328 68.5 328 68.5 

IPT4 (1995-1997) 24 70.9 - - 

IPT5 (1999-2002) 386 70.5 336 70.0 

IPT6 (2002-2005) 348 71.8 247 71.4 

IPT7 (2006-2008) 297 73.9 - - 

IPT8 (2008-2010) 280 75.5 248 75.6 

IPT9 (2010-2012) 242 76.5 201 77.3 

IPT10 (2012-2014) 224 77.6 42 76.4 



 

Table S3: Association between DNA methylation and body mass index at baseline between and within twin pairs 

 Between-pair estimate Within-pair estimate 
Within-pair estimate  

Dizygotic twin pairs 

Within-pair estimate  

Monozygotic twin pairs 

CpG β 95% CI P-val β 95% CI P-val β 95% CI P-val β 95% CI P-val 

cg06192883 0.83 0.35,1.31 <0.001** 0.40 -0.06,0.86 0.09 0.71 0.09,1.33 0.026* -0.18 -0.77,0.42 0.56 

cg11024682 0.47 -0.01,0.95 0.053 0.50 0.08,0.93 0.021* 0.55 -0.04,1.15 0.068 0.38 -0.14,0.90 0.15 

cg00574958 -0.44 -0.97,0.10 0.11 -0.24 -0.65,0.18 0.26 -0.27 -0.85,0.31 0.36 -0.22 -0.73,0.29 0.39 

cg08857797 0.40 -0.10,0.90 0.113 0.40 -0.02,0.83 0.064 0.47 -0.12,1.07 0.12 0.22 -0.31,0.76 0.41 

cg06946797 -0.34 -0.84,0.15 0.173 0.43 -0.01,0.86 0.055 0.62 0.05,1.19 0.034* 0.06 -0.55,0.66 0.86 

cg13123009 0.01 -0.47,0.49 0.97 -0.02 -0.49,0.45 0.94 -0.06 -0.67,0.56 0.86 0.02 -0.66,0.69 0.96 

cg09664445 0.25 -0.25,0.76 0.33 0.15 -0.26,0.55 0.47 0.13 -0.43,0.69 0.64 0.22 -0.29,0.73 0.4 

 

Beta values, 95% confidence intervals, and p-values of the association between DNA methylation at seven different sites and body mass index. Between-

within models were applied to compare estimates between and within twin pairs. All models are adjusted for age, sex, smoking, and methylation array. 

*Significance at the α=0.05 level. ** Significance after strict Bonferroni correction at α=0.007 



 

Table S4: Longitudinal trajectories of DNA methylation 

  Random intercept model  Random intercept and slope model  

 Intercept Slope Intercept Slope P-val 

Outcome β 95% CI P-val β 95% CI P-val β 95% CI P-val β 95% CI P-val LRT 

cg06192883 0.448 0.177,0.719 0.001** 0.005 -0.001,0.011 0.13 0.460 0.191,0.728 <0.001** 0.005 -0.002,0.011 0.15 0.55 

cg11024682 0.465 0.185,0.745 0.001** 0.013 0.007,0.019 < 0.001** 0.461 0.179,0.742 0.001** 0.013 0.007,0.019 < 0.001** 0.22 

cg00574958 0.104 -0.127,0.334 0.38 0.009 -0.015,-0.003 0.004** 0.108 -0.124,0.339 0.36 0.009 -0.015,-0.003 0.005** 0.90 

cg08857797 0.389 0.141,0.638 0.002** 0.003 -0.009,0.004 0.42 0.389 0.141,0.638 0.002** 0.002 -0.009,0.004 0.50 0.15 

cg06946797 0.392 0.118,0.665 0.005** 0.005 -0.012,0.001 0.08 0.388 0.113,0.663 0.006** 0.006 -0.012,0.001 0.08 0.61 

cg13123009 0.546 0.283,0.809 <0.001** 0.000 -0.006,0.007 0.889 0.553 0.290,0.816 <0.001** 0.000 -0.006,0.006 0.98 0.41 

cg09664445 0.180 -0.067,0.426 0.15 0.013 -0.020,-0.007 <0.001** 0.164 -0.082,0.410 0.19 0.014 -0.020,-0.007 <0.001** 0.24 

 

Beta values, 95% confidence intervals, and p-values from latent growth curve of longitudinal change in methylation levels at the seven CpG sites. All models 

are adjusted for age, sex, smoking, and methylation array. *Significance at the α=0.05 level. ** Significance after strict Bonferroni correction at α=0.007 



 

Table S5: Association between DNA methylation, body mass index, and potential 

mediators at baseline 

 

CpG and mediator 

 

a) CpG --> Mediator 

β (95% CI) 

b) CpG --> BMI, 

adjusted for mediator 

β (95% CI) 

 

c) P-value, mediation 

 

cg06192883    

No mediator  0.72 (0.37,1.07)  

Type 2 diabetes 0.08 (-0.11,0.27) a 0.72 (0.37,1.07) 0.93 

Blood glucose 0.21 (0.06,0.36) 0.68 (0.32,1.03) 0.006 

Total cholesterol 0.01 (-0.09,0.12) 0.69 (0.33,1.05) 0.78 

Triglycerides 0.07 (0.03,0.12) 0.56 (0.20,0.91) <0.001 

cg11024682    

No mediator  0.48 (0.15,0.82)  

Type 2 diabetes 0.06 (-0.12,0.24) a 0.48 (0.14,0.82) 0.96 

Blood glucose 0.22 (0.07,0.36) 0.41 (0.07,0.76) 0.01 

Total cholesterol -0.03 (-0.13,0.07) 0.56 (0.21,0.90) 0.54 

Triglycerides 0.07 (0.02,0.11) 0.44 (0.11,0.78) 0.006 

cg00574958    

No mediator  -0.37 (-0.73,-0.02)  

Type 2 diabetes -0.10 (-0.29,0.09)a -0.37 (-0.73,-0.01) 0.90 

Blood glucose -0.10 (-0.25,0.05) -0.35 (-0.71,0.01) 0.15 

Total cholesterol -0.04 (-0.14,0.06) -0.39 (-0.76,-0.03) 0.43 

Triglycerides -0.09 (-0.13,-0.04) -0.22 (-0.58,0.14) 0.002 

cg08857797    

No mediator  0.36 (0.01,0.71)  

Type 2 diabetes 0.02 (-0.17,0.20) a 0.36 (0.01,0.70) 0.94 

Blood glucose 0.09 (-0.06,0.24) 0.35 (-0.01,0.70) 0.22 

Total cholesterol -0.00 (-0.10,0.10) 0.32 (-0.04,0.67) 0.97 

Triglycerides 0.02 (-0.02,0.07) 0.28 (-0.07,0.62) 0.40 

 

Beta values and 95% confidence intervals from linear regression models of DNA methylation at four 

CpG sites as predictors of a) potential mediators, and b) BMI, with and without adjusting for potential 

mediators. The p-value for the mediating effect of each potential mediator was obtained through 



 

bootstrapping with 1000 repetitions. All models were adjusted for age, sex, smoking, and 

methylation array. Models including blood glucose, total cholesterol, or triglycerides were further 

adjusted for fasting at time of blood sample. 

a The association between DNA methylation and type 2 diabetes was modelled with logistic 

regression.  

 

Table S6: Comparison of twin-pair correlation between monozygotic and dizygotic twin-

pairs 

CpG rMZ (95% CI) rDZ (95% CI) 
Falconer 

heritability 

cg06192883 0.34 (0.14-0.52) 0.24 (0.09-0.38) 0.21 

cg11024682* 0.18 (-0.03-0.39) 0.32 (0.17-0.45) -- 

cg00574958 0.11 (-0.11-0.32) 0.11 (-0.05-0.26) 0.00 

cg08857797 0.18 (-0.04-0.38) 0.10 (-0.06-0.25) 0.16 

cg06946797** 0.38 (0.17-0.55) 0.10 (-0.05-0.26) 0.54 

cg13123009 0.36 (0.16-0.54) 0.26 (0.10-0.40) 0.21 

cg09664445 0.16 (-0.06-0.37) 0.10 (-0.06-0.25) 0.13 

 

Twin-pair correlations and 95% confidence intervals at each CpG site for monozygotic (rMZ) and 

dizygotic (rDZ) twin pairs. The Falconer heritability is a measure of the unadjusted broad-sense 

heritability, and was calculated using the Falconer formula: 2 x (rMZ - rDZ)(1). 

* Heritability could not be calculated due to rDZ being higher than rMZ 

** The low rDZ and high rMZ indicates presence of non-additive/dominance genetic effects 
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