
 
 

 

  

Abstract—This paper presents a novel hybrid method 

combining genetic programming and decision tree learning. 

The method starts by estimating a benchmark level of 

reasonable accuracy, based on decision tree performance on 

bootstrap samples of the training set. Next, a normal GP 

evolution is started with the aim of producing an accurate GP. 

At even intervals, the best GP in the population is evaluated 

against the accuracy benchmark. If the GP has higher accuracy 

than the benchmark, the evolution continues normally until the 

maximum number of generations is reached. If the accuracy is 

lower than the benchmark, two things happen. First, the fitness 

function is modified to allow larger GPs, able to represent more 

complex models. Secondly, a decision tree with increased size 

and trained on a bootstrap of the training data is injected into 

the population. The experiments show that the hybrid solution 

of injecting decision trees into a GP population gives synergetic 

effects producing results that are better than using either 

technique separately. The results, from 18 UCI data sets, show 

that the proposed method clearly outperforms normal GP, and 

is significantly better than the standard decision tree algorithm. 

I. INTRODUCTION 

nowledge Discovery in Databases is an interactive, 

iterative procedure that attempts to extract implicit, 

previously unknown useful knowledge from data [1]. Often 

Knowledge Discovery boils down to classification, i.e., the 

task of training some sort of model capable of assigning a 

class from a predefined set of labels to unlabeled instances. 

The classification task is characterized by well-defined 

classes, and a training set consisting of pre-classified 

examples [2]. Accuracy on the unlabeled data is usually the 

main goal when training a model, but most decision makers 

would require at least a basic understanding of a predictive 

model to use it for decision support [3], [4], [5]. 

Comprehensibility is normally achieved by using high-level 

knowledge representations. A popular one, in the context of 

data mining, is a set of IF-THEN prediction rules [6]. It is, 

however, also important to realize that even if a model is 

transparent, it is still not comprehensible if it is larger than a 

human decision maker can grasp. Hence, creating reasonable 

sized models is also an important goal when 

comprehensibility is required. 
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In the data mining community, decision tree algorithms 

are very popular since they are relatively fast to train and 

produce transparent models. Greedy top-down construction 

is the most commonly used method for tree induction. Even 

if greedy splitting heuristics are efficient and adequate for 

most applications, they are essentially suboptimal [7]. More 

specifically, decision tree algorithms are suboptimal since 

they optimize each split locally without considering the 

global model. Furthermore, since finding the smallest 

decision tree consistent with a specific training set is a NP-

complete problem [8], machine learning algorithms for 

constructing decision trees tend to be non-backtracking and 

greedy in nature [9].  Hence, due to the local non 

backtracking search, decision trees may get stuck in local 

minima. 

An alternative to the greedy search is to globally optimize 

the model using some evolutionary technique, e.g., Genetic 

Programming (GP) [10]. GP has, however, a well known 

weakness called bloating, i.e., the size of evolved trees may 

grow out of control. Bloating is a serious problem since 

large programs are computationally expensive to evolve, 

will be hard to interpret, and tend to exhibit poor 

generalization [11]. It should be noted, on the other hand, 

that a certain growth may be necessary to find a more 

complex solution. Normally, bloating is handled by 

incorporating some kind of size related punishment in the 

fitness function, see e.g. [12],[13]. A down side to this 

approach is that the size punishment will enforce an upper 

bound for the tree size, even if no exact size limit is set. 

Hence, different settings for the size punishment is often 

used to evolve smaller or larger trees, see e.g. [12], [13]. 

Theoretically, every point in the search space has a 

nonzero probability of being sampled; but for most problems 

of interests the search space is so large that it is impractical 

to wait long enough for guaranteed global optimums [15]. 

Larger trees with more nodes naturally lead to larger search 

spaces since the attributes and possible splits can be 

combined in more ways. Therefore a higher size punishment 

could also be used to restrict the size of the evolved tree and 

thereby keep the search space within practical limits.  

Since smaller rules are more comprehensible, the choice 

of length punishment becomes a crucial design choice. On 

one hand, a size punishment favoring smaller trees may 

result in a sub-optimal accuracy since larger complex rules 

may not be evolved. On the other hand, if larger trees are 

favored, it may result in an unnecessary complex solution or 

a suboptimal solution due to the very large search space. 

Based on the discussion above, this paper presents a hybrid 
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method combining decision trees and GP. The method not 

only automatically adjusts the size punishment to an 

appropriate level, but also guides the GP process towards 

good solutions in the case of an impractically large search 

space. 

II. BACKGROUND 

This section will first present the main decision tree 

algorithms, and some approaches aimed at overcoming the 

problems caused by the greedy search. After that, classifier 

systems based on genetic programming will be discussed, 

followed by a section describing hybrid methods.  

A. Decision Trees 

A decision tree algorithm typically optimizes some 

information theoretic measure, like information gain, on a 

training set. The generation of the tree is done recursively by 

splitting the data set on the independent variables. Each 

possible split is evaluated by calculating the purity gain it 

would result in if it was used to divide the data set D into the 

new subsets S={D1, D2,…,Dn}. The purity gain is the 

difference in purity between the original data set and the 

subsets as defined in equation 1 below, where P(Di) is the 

proportion of D that is placed in Di. The split resulting in the 

highest purity gain is selected, and the procedure is then 

repeated recursively for each subset in this split.  

 

 ������, �	 = ��
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There are several different decision tree algorithms, two of 

the more well-known are C4.5 [16] and CART [17]. Slightly 

different purity functions are used, C4.5 optimizes entropy 

E, (equation 2) while CART optimizes the gini index (GDI 

in equation 3.) In the equations below, C is the possible 

classes, p is the estimated class probability and t is the 

current tree node.  
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Compared to optimizing GDI, entropy tends to lead to 

smaller and purer nodes, which is favorable for problems 

with a clear underlying relationship, but inferior when the 

data contain a lot of noise or are missing a real relationship 

[18]. 

When no splits improving purity can be found, the tree 

needs to be pruned to remove overly specific nodes to 

improve the generalization ability of the tree. Pruning is 

typically performed by choosing the best sub-tree based on 

the error rate on an unseen validation data set. 

1) Improving suboptimal trees 

Many researchers have tried to improve decision tree 

performance by considering several sequential splits instead 

of only the next. However, most studies have shown that this 

approach generally fails to improve the performance, and 

that it even may be harmful, see e.g. [7], [19]. 

There have also been several attempts to improve 

suboptimal decision trees using a second stage where the 

tree is modified using another search technique. An example 

of this approach is [20], where a tree is first created using 

fuzzy logic search. In the second stage, the terminal nodes in 

the tree are adjusted to be optimized on the whole training 

set. Other examples are [21] where a suboptimal decision 

tree is optimized using dynamic programming and [22] 

where multi-linear programming is applied in a similar way. 

It should be noted, however, that even if these algorithms 

improve the suboptimal decision trees, they are not truly 

using global search, since they are dependent of the initial 

structure of the tree. 

2) Genetic Programming for Classification 

Normally a full atomic representation is used for GP 

classification. An atomic representation uses atoms in 

internal and leaf nodes [9]. Each internal atom represents a 

test consisting of an attribute, an operator and a value, 

where the operator is a Boolean function. Leaf nodes 

contain atoms representing a class of the predicted attribute.  

GP classification representations can be divided into the 

Michigan and Pittsburgh approaches [6]. In the Michigan 

approach, each individual encodes a single prediction rule, 

whereas in the Pittsburgh approach each individual encodes 

a set of prediction rules.  

Another important issue to consider is that conventional 

GP is based on the basic assumption of closure [10]. To 

achieve closure, the output of any node in a GP tree must be 

able to handle all possible parent nodes. This typically 

becomes a problem when a dataset contains both categorical 

and continuous attributes since they need to be handled by 

different functions. 

One way to handle this is to use constrained syntactic 

structures, see [23], where a set of rules defines allowed sub 

nodes for each non terminal function. These rules are then 

enforced when creating new trees and during crossover and 

mutation. Another slightly more flexible solution is strongly 

typed GP [24], which instead defines the allowed data types 

for each argument of each non-terminal function and the 

returned types of all nodes. 

B. GP classifier systems 

GP classification has been used successfully in many 

applications for a survey see [25]. A common setup is to use 

the Pittsburg approach with a full atomic representation. 

Most often the Boolean functions <, = are used as operators 

while class assignment of the target attribute is used as 

terminals. A typical fitness function minimizes both some 

error metric and the size of the tree, thus maximizing 

accuracy and comprehensibility, see equation 4  

 
 (���)** = +��

,
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where w1 and w2 are two user-defined weights and Simp is a 

measure of the rule simplicity (comprehensibility). Normally 

2943



 
 

 

Simp is inversely proportional to the number of conditions in 

the rule, i.e., the shorter the rule, the more comprehensible it 

is [6]. Variations of the fitness function that follow this 

general form can be found in, for instance, 

[12],[26],[27],[28].  

C. Extensions of standard GP-classification 

Since the search space for classification tasks tends to 

become extremely large [9], several methods for improving 

classification performance of GP systems have been 

suggested.  

In [29], a GP-system that uses stepwise adaptation of 

weights (SAW) is presented. The basic idea is to 

dynamically assign higher weights for errors on “hard” 

instances, in an online fashion. However, the experiments 

show that the suggested SAWing approach fails to 

consistently reach a higher performance, compared to 

standard GP classification. 

In another study [9], machine learning techniques are used 

to refine the GP search space. One method applies K-means 

clustering to reduce the huge number of possible atoms. 

Another approach uses C4.5’s entropy gain criterion 

(calculated on the whole data set) to create n new partitions 

that are used instead of the normal atomic representation. 

Both methods show promising results compared to normal 

GP and C4.5. A problem for both techniques is, however, 

that their performances are clearly dependent on certain non-

trivial parameter values, i.e., the number of clusters used in 

K-means and the number of partitions.  

A classifier system based on the Michigan representation 

is used in [30], where several classification rules are 

evolved. Each rule consists of enumerations of attribute 

value pairs, combined with only two Boolean functions, 

AND and NOT. If more than one rule covers an instance, the 

best rule will be used for classification. GPC, as the method 

is called, also uses a covering algorithm to calculate the 

overlap of different rules and penalize redundant rules. 

Experiments on nine data sets show that the algorithm 

performs comparably to other classifiers, despite the simple 

representation.   

D. Hybrid Systems 

The flexibility of GP makes it easy to combine it with other 

techniques in hybrid systems. Hence, numerous variations of 

GP classification systems exist, including decision trees, 

artificial neural networks, fuzzy logic and support vector 

machines. The following section, will only present some 

typical hybrid methods for creating decision trees, since 

decision trees is the targeted technique in this study.  

In [31], decision trees are used to create the initial GP 

population. More specifically, each individual in the 

population is created using C4.5. To achieve some diversity, 

each C4.5 tree is created from a random subset of the 

original training set. In the reported experimentation, the 

suggested method performs remarkably well, compared to 

the other techniques. This is very surprising since CART 

reaches the same training accuracy but has almost 20% 

lower test accuracy. Since both techniques use almost 

identical representations, and the results are averaged over 

five folds, more similar accuracies should be expected. On 

one fold, both CART and the hybrid method achieve 100% 

accuracy on training data, but on the test data CART only 

reaches 69% compared to 90% for the hybrid method. 

Furthermore, the benefit of using C4.5 as creation method is 

hard to evaluate based on this study alone, simply because 

the results for comparable standalone runs of normal GP and 

C4.5 are missing, i.e., there is no way of knowing if GP 

increased the accuracy of the original rules. 

A similar method also utilizing C4.5 to create the initial 

population was presented in [32]. The aim of this study was 

to produce short and comprehensible rules. This was 

motivated by the statement that C4.5 produced much shorter 

and comprehensible rules but could not be trained 

incrementally. The suggested method created the initial 

population in the same way as the previous study but used 

C4.5 settings that created smaller trees. Experiments were 

performed on a digit recognition data set, where the 

proposed method produced smaller and slightly more 

accurate trees, compared to a normal GP implementation. 

However, when the number of generations increased, the GP 

trees achieved the same accuracy as the hybrid method. 

Furthermore, a survey of 13 articles performed in [25], 

showed that GP produced more comprehensible rules in 

66% of 60 analyzed occasions. 

Genetic algorithms (GA) can be used in a similar way to 

GP, even if the representation of arbitrary sized rules is not 

as straightforward. In [33], a GA and decision tree hybrid is 

proposed to handle small disjuncts in classification problems 

better. The motivation is that since the general belief is that 

large disjuncts capture generalization better, most rule 

induction algorithms have a bias favoring the discovery of 

large disjuncts. Although each disjunct only covers a few 

examples, a set of disjuncts can cover a large part of the data 

set. The proposed method first uses C4.5 to find the large 

disjuncts, and then the remaining instances are classified 

using GA to create rules that cover the small disjuncts. Rules 

are represented using the Michigan approach and rule 

conditions consist of attribute-value pairs. Experiments 

performed on the Adult data set from the UCI machine 

learning repository [34] showed that the hybrid method was 

considerably better than only using a C4.5 tree. 

Another approach to simplifying the creation of a decision 

tree is rule extraction. Rule extraction techniques are 

designed to handle the so called accuracy versus 

compressibility tradeoff, i.e., the fact that most powerful 

techniques like artificial neural networks, support vector 

machines and ensembles, all are opaque and impossible to 

interpret. The basic idea of rule extraction is to use the 

prediction of an accurate but opaque model as the target 

instead of the original class value when building a 

transparent model. The core idea is that the powerful 

technique can generalize and create a classification for the 

training instances that has less noise than the original data. 
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Genetic Rule Extraction (G-REX) is a rule extraction 

technique based on genetic programming. In several studies, 

e.g. [13],[35], G-REX have been shown to outperform 

standard decision tree algorithms such as C4.5 and CART, 

both in terms of accuracy and comprehensibility. 

Disregarding the rule extraction feature, G-REX is a typical 

GP classification system based on the Pittsburg 

representation and constrained syntactic structures.     

III. METHOD 

The following section will present a novel hybrid technique 

called DT Injection GP (DTiGP). The method starts with 

estimating a benchmark level for reasonable accuracy, based 

on decision tree performance on bootstrap samples of the 

training set. Next, a normal GP evolution is started with the 

aim of producing an accurate GP. At even intervals, the best 

GP in the population is evaluated against the accuracy 

benchmark. If the GP has higher accuracy than the 

benchmark, the evolution continues as normal until the 

maximum number of generations is reached. If the accuracy 

falls below the benchmark, two things happen. First, the 

fitness function is modified to allow larger GPs able to 

handle more relationships. Secondly, a decision tree with 

increasing size (trained on a bootstrap of the training data) is 

injected into the population. 

The overall purpose of the method is to automatically 

force the GP to search for models of suitable size; i.e., as 

small as possible but not overly simplified. Because of this, 

after the threshold for reasonable accuracy is established, the 

GP starts out with small trees and a high length penalty, but 

is allowed to search for increasingly larger trees until the 

accuracy is higher than the threshold. In more detail, this is 

accomplished by decreasing the length penalty and by 

injecting accurate models into the population. Once the level 

of acceptable accuracy is met by the GP, normal GP 

optimization is used for the rest of the search. 

As described above, the method is consists of three parts: 

estimating a reasonable level of accuracy, evolving GP trees 

and conditionally injecting decision trees.  

Each part will be described in detail and motivated in the 

sections below. Evaluation of the method is done against 

normal GP, the decision tree algorithm used for the injected 

trees and J48.  

A. Estimating Reasonable Accuracy 

To obtain as comprehensible trees as possible, a high size 

punishment will initially be used to favor small solutions 

regardless of the data set. A smaller punishment could lead 

to unnecessary complex and specialized trees that may 

generalize poorly, when the data contains noise. However, 

some data sets require a large complex solution and do not 

contain noise. In these cases, a more complex solution is 

actually required. A typical example is the UCI dataset Tic-

Tac-Toe, which encodes the complete set of possible board 

configurations at the end of tic-tac-toe games. Since no noise 

exists, and there is a true underlying concept, a larger 

solution will most often perform better.  

However, since the true complexity of the solution is not 

known, it is impossible to directly set the length punishment 

in an optimal way. Instead, the proposed method will 

dynamically lower the size punishment, until a reasonable 

accuracy is achieved. Several GP runs, with varied size 

punishments, could of course be used to find the best setting, 

but since GP is computational expensive, this is normally 

not practical. Decision trees are, however, fast to train and 

usually perform quite well.  

To get a good approximation of the performance, 10 

bootstrap samples are first drawn from the training set. 

Training instances not selected for a specific bootstrap are 

instead used as an out of bag test set for that bootstrap. Next, 

decision trees are created using jaDTi [36], an open source 

implementation based on the C4.5 algorithm. The main 

difference from the real C4.5 algorithm is that jaDTi uses 

pre pruning based on an entropy threshold, and a score 

threshold instead of the usual sub tree based post pruning of 

C4.5. The entropy threshold is set to 0.5 and the score 

threshold is set to 0.01 * the size of the data set, i.e., the 

number of instances in the data set. When all trees have been 

created, both average training and test accuracies are 

calculated. However, since reasonable training accuracy is 

sought, the mean test accuracy would be a too pessimistic 

value, and the mean training accuracy would be too 

optimistic. Instead, the average of these values is used as the 

benchmark for reasonable training accuracy for the GP 

system.  

B. Evolving Decision Trees 

Since this study is a comparison of evolutionary classifier 

systems and decision tree algorithms, the Pittsburgh 

approach is the most suitable in view of the fact that each 

individual represents a single decision tree. Furthermore, a 

fair comparison also demands that the GP system uses the 

same internal representation, i.e., IF - THEN rules. The GP 

implementation of DTiGP is based on an open source 

framework for evolutionary data mining presented in [26]. 

GP settings used in the experiment are presented in Table I. 

 
TABLE I  

GP SETTINGS 

Population size 200 

Creation type Ramped Half and Half 

Selection type Roulette wheel 

Number of Generations 100 

Crossover probability 80% 
Mutation probability 1% 

 

Equation 5 below defines the fitness function that is 

minimized in the experiments.  
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ErrorRate  is the percentage of misclassified instances, size 

is the number of nodes in the tree and w  is a weight used to 
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balance the size punishment. Since it is the percentage of 

misclassified records that is minimized, the settings of w is 

independent of the number of instances in the data set. Note 

that the size punishment also is scaled with the error rate to 

make the size more important for less accurate trees.  

Initially, w is 0.01, to ensure that small comprehensible 

rules are evolved. However, every five generations, the 

training accuracy of the best individual is compared to the 

benchmark for reasonable accuracy. If the best individual 

has a lower accuracy than the benchmark, w is decreased ten 

percent, i.e. w=w*0.9, otherwise the evolution continues as 

normal. As mentioned above the motivation for this 

adjustment is to allow larger more complex trees when 

necessary.  

C. Injection of Decision Trees 

If the search space is very large, and especially if the 

population has been evolved with a high size punishment, it 

can sometimes be hard for the GP search to find a good 

solution. To help the GP process in these situations, new 

individuals created using jaDTi will be injected in to the 

population. Similar to how the size punishment is handled, 

the best individual will be evaluated against the benchmark 

for reasonable training accuracy every 15th generation. If the 

best individual performs worse than the benchmark, a 

random tree in the population will be replaced with a jaDTi 

tree. However, larger jaDTi trees would often have a very 

high performance, compared to the GP population since they 

are optimized on the training set and could easily become 

dominant in the population. To avoid introducing 

unnecessary large trees, the injected jaDTi will have an 

ascending size, starting with compact trees. The tree size is 

decided by stepwise adjusting the score threshold of jaDTi 

from 0.05 to 0.001. The score threshold is then multiplied 

with the size of the dataset in the same way as when 

estimating reasonable accuracy. To make it easier to control 

the size of the produced trees, the influence of the entropy 

threshold is minimized by setting it to 0.0005. Even if 

different bootstrap samples and score thresholds are used for 

each tree, they may still become quite similar due to the 

deterministic nature of the decision tree search. Hence, to 

give the jaDTi trees some extra diversity they are mutated 

(using the standard GP mutation operation) before being 

injected into the population.  

IV. EVALUATION 

The experimentation used 18 UCI data sets and 4-fold cross 

validation. Standard two tailed sign tests were used to test 

for significance in the result. To ensure a fair evaluation, all 

techniques were implemented in WEKA [37]. The reported 

results are the average accuracies over all folds. 

Comparisons were made against jaDTi, normal GP and 

WEKA’s J48. The results of jaDTi and normal GP are 

reported to evaluate if the hybrid combination is better than 

just using the techniques separately.  

In the experimentation, normal GP uses the same settings 

and fitness function as DTiGP, except from using a lower 

weight for the size punishment, (w=0.001). A lower weight 

is used since DTiGP is supposed to start looking for really 

short and comprehensible solutions, while normal GP must 

try to find accurate and reasonably sized tree.  

J48 is included in the experiments since it is a well-known 

decision tree algorithm, and therefore should be a good 

benchmark. J48 is like jaDTi based on the C4.5, but uses the 

original post pruning, in difference to jaDTi. J48 is executed 

with the standard settings in WEKA.  

A. Data sets 

The experiments are performed on 18 well known data sets 

publically available from the UCI machine learning 

repository [38]. For a summary of the characteristics of the 

data sets, see Table II. Size is the number of instances in the 

data set. Classes is the number of output classes in the data 

set. Num. is the number of numeric attributes, and Nom. is 

the number of nominal attributes.  

 
TABLE II  

CHARACTERISTICS OF DATA SET 

Data set Size Classes Num. Nom. 

Breast-cancer 286 2 0 9 

Breast-w 699 2 9 0 

Colic 368 2 7 15 

Credit-a 690 2 6 9 

Credit-g 1000 2 7 13 

Cylinderbands 540 2 20 19 

Diabetes 768 2 8 0 

Ecoli 336 8 7 0 

Glass 214 7 9 0 

Haberman 306 2 2 1 

Heart-cleveland 303 2 6 7 

Heart-statlog 270 2 5 8 

Hepatitis 155 2 6 13 

Iris 150 3 4 0 

Labor 57 2 8 8 

Liver-disorders 345 2 6 0 

Lymph 148 4 3 15 

Tic-tac-toe 958 2 0 9 

 

V. RESULTS 

Table III shows the average test accuracies over 4 folds for 

each of the tested techniques. The best result for each dataset 

is marked with bold letters. DTiGP performs best and have 

the highest score (with three split victories) on 10 of the 18 

datasets. Normal GP is the second best technique, with 7 

overall wins, including two split victories. DTiGP also has 

the highest mean accuracy, followed by normal GP, J48 and 

jaDTi. 
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TABLE III 
AVERAGE ACCURACY OVER FOUR FOLDS 

Data set jaDTi GP DTiGP J48 

Breast-cancer 68.8% 69.6% 71.7% 69.9% 

Breast-w 93.6% 94.6% 94.7% 95.6% 

Colic 75.4% 73.9% 82.6% 86.0% 

Credit-a 82.2% 86.7% 86.4% 85.5% 

Credit-g 67.7% 72.3% 72.0% 73.0% 

Cylinderbands 71.5% 66.5% 71.5% 57.8% 

Diabetes 68.0% 73.7% 73.7% 73.3% 

Ecoli 75.3% 81.5% 79.5% 78.6% 

Glass 67.3% 61.2% 67.3% 66.8% 

Haberman 67.6% 74.5% 73.5% 73.9% 

Heart-cleveland 72.6% 78.2% 78.9% 75.9% 

Heart-statlog 72.6% 80.0% 77.8% 77.0% 

Hepatitis 73.5% 73.5% 83.2% 80.6% 

Iris 94.0% 94.7% 96.0% 95.3% 

Labor 79.0% 89.5% 89.5% 73.7% 

Liver-disorders 63.8% 62.0% 64.1% 62.0% 

Lymph 78.4% 79.7% 78.4% 73.0% 

Tic-tac-toe 93.6% 78.8% 89.9% 84.9% 

Average 75.8% 77.3% 79.5% 76.8% 

 

To evaluate if there are any statistically significant 

differences, a standard pair wise sign test was used. Using 

18 data sets, a sign test requires 14 wins for statistical 

significance. Table IV shows wins, ties and losses for the 

row technique against the column technique. Significant 

results are marked in bold. 

As seen in the table, DTiGP performs significantly better 

than both decision tree algorithms, having 14 wins against 

each. J48 has 12 wins against jaDTi, which is not significant.  

 
TABLE IV 

WINS/TIES/LOSSES 

  jaDTi GP DTiGP J48 

jaDTi - 5/1/12 1/3/14 6/0/12 
GP 12/1/5 - 6/2/10 9/1/8 
DTiGP 14/3/1 10/2/6 - 14/0/4 

J48 12/0/6 8/1/9 4/0/14 - 

 

VI. DISCUSSION 

It is interesting to note that DTiGP is 11% better than normal 

GP on the Tic-Tac-Toe dataset. Obviously this is due to the 

high performance of jaDTi, which reaches an even higher 

accuracy by building a very large tree. Since this dataset 

does not contain any noise, a bigger tree will almost always 

be better. However, this is exactly what DTiGP was 

designed to achieve. Since the benchmark for reasonable 

performance also is calculated using jaDTi, it becomes 

rather high and forces DTiGP to increase its training 

accuracy by lowering the size punishment and injecting 

larger jaDTi trees. The exact same scenario also happens on 

cylinder bands and glass, where jaDTi clearly outperforms 

normal GP, thus forcing the GP to aim for higher training 

accuracy by using larger programs.  

It is not surprising that DTiGP’s accuracy increases when 

jaDTi outperforms normal GP, since similar trees will be 

injected into the population. However, DTiGP is not 

bounded by the accuracy of jaDTi. As seen in table IV, 

jaDTi only outperforms normal GP on five datasets, but 

DTiGP has 10 wins over normal GP. In fact, DTiGP is not 

bounded by the performance of either technique, since it has 

seven outright wins when compared to jaDTi and normal 

GP. Colic and Hepatitis are two good examples where 

DTIGP wins over both techniques with large margins (7% 

and 10%, respectively.). 

J48 is significantly worse than DTiGP, but still better than 

jaDTi on 12 datasets. J48 wins over jaDTi is probably due to 

the more advanced pruning algorithm, since both use a 

creation method based on C4.5. This result is interesting 

since it shows a possible improvement by using J48 in 

DTiGP instead of jaDTi.  

Finally it is interesting to note that normal GP and J48 

perform comparable with nine and eight wins respectively 

(with one draw). Apparently, the settings used for normal 

GP is not sufficient to constantly outperform decision tree 

algorithms. In that light, the fact that DTiGP significantly 

outperforms J48 must be considered a strong result. 

Furthermore, DTiGP also performs clearly better than 

normal GP, losing on only six data sets of 18 against normal 

GP. In addition, in all six losses, the differences in accuracy 

obtained by the two techniques are all less than 2%. On the 

other hand, DTiGP has 10 wins against normal GP, where 

five of these wins are between 5% and 10% better than 

normal GP.  

Even if the aim of this study was not to evaluate the size 

of the produced trees, intial results (not presented in detail 

here) show that DTiGP generally evolved trees that were 

shorter than trees produced by jaDTi and J48, but slightly 

larger than the original GP. This is a very promising results 

since DTiGP clearly outperforms the other techniques with 

regards to accuracy. Typically the trees are only 

considerably larger when DTiGP outperforms normal GP; 

i.e., when the algorithm is forced to look for larger trees in 

order to obtain sufficient accuracy   

VII. CONCLUSIONS 

The aim of this study was to present DTiGP, a novel 

technique aimed at improving GP classification accuracy. 

DTiGP’s main strength is that it increases the robustness of 

normal GP, thus performing well over a large range of 

problems. In the experimentation, DTiGP was significantly 

better than J48, and clearly outperformed normal GP.  

DTiGP robustness comes from the use of a benchmark 

level for reasonable training accuracy, but also from the 

injection of decision trees and an adjustable length 

punishment. It is clear that the use of the benchmark greatly 

improves DTiGP’s result in at least three of the datasets 

where normal GP performs poorly. Nevertheless, the 

benchmark is not enough in itself when the search space is 

too big. Hence, a very important feature of DTiGP is the 
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injection of accurate trees to help the evolution, when the 

benchmark training accuracy cannot be reached.  

Lowering the weight of the size punishment and injecting 

jaDTi trees greatly improves the robustness and accuracy of 

DTiGP. Furthermore, the method does not only improve the 

results on hard data sets where standard GP performs poorly, 

but also showed to increase the accuracy even when GP 

outperformed jaDTi. All in all, the experiments clearly show 

that the hybrid solution of injecting decision trees into a GP 

population gives synergetic effects, resulting in higher 

accuracies than using the basic techniques separately.  

VIII. FUTURE WORK 

Since J48 clearly outperformed jaDTi, it should be 

interesting to evaluate the effects of injecting J48 trees. J48 

is more consistent, so should be expected to produce both 

better trees for injection and a better estimation of 

reasonable training accuracy. In addition, the optimal setup 

for when and how often, trees should be injected could be 

investigated further.  
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