

Abstract—This paper presents a novel hybrid method

combining genetic programming and decision tree learning.

The method starts by estimating a benchmark level of

reasonable accuracy, based on decision tree performance on

bootstrap samples of the training set. Next, a normal GP

evolution is started with the aim of producing an accurate GP.

At even intervals, the best GP in the population is evaluated

against the accuracy benchmark. If the GP has higher accuracy

than the benchmark, the evolution continues normally until the

maximum number of generations is reached. If the accuracy is

lower than the benchmark, two things happen. First, the fitness

function is modified to allow larger GPs, able to represent more

complex models. Secondly, a decision tree with increased size

and trained on a bootstrap of the training data is injected into

the population. The experiments show that the hybrid solution

of injecting decision trees into a GP population gives synergetic

effects producing results that are better than using either

technique separately. The results, from 18 UCI data sets, show

that the proposed method clearly outperforms normal GP, and

is significantly better than the standard decision tree algorithm.

I. INTRODUCTION

nowledge Discovery in Databases is an interactive,

iterative procedure that attempts to extract implicit,

previously unknown useful knowledge from data [1]. Often

Knowledge Discovery boils down to classification, i.e., the

task of training some sort of model capable of assigning a

class from a predefined set of labels to unlabeled instances.

The classification task is characterized by well-defined

classes, and a training set consisting of pre-classified

examples [2]. Accuracy on the unlabeled data is usually the

main goal when training a model, but most decision makers

would require at least a basic understanding of a predictive

model to use it for decision support [3], [4], [5].

Comprehensibility is normally achieved by using high-level

knowledge representations. A popular one, in the context of

data mining, is a set of IF-THEN prediction rules [6]. It is,

however, also important to realize that even if a model is

transparent, it is still not comprehensible if it is larger than a

human decision maker can grasp. Hence, creating reasonable

sized models is also an important goal when

comprehensibility is required.

This work was supported by the Information Fusion Research Program
(www.infofusion.se) at the University of Skövde, Sweden, in partnership
with the Swedish Knowledge Foundation under grant 2003/0104.

R. König, U. Johansson and T. Löfström are with the School of Business
and Informatics, University of Borås, Allégatan 1, 501 90 Borås, Sweden
(e-mail: rikard.konig@hb.se, ulf.johansson@hb.se, tuve.lofstrom@hb.se)

L. Niklasson is with the School of Humanities and Informatics,
University of Skövde, Box 408, 541 28 Skövde, Sweden
(e-mail: lars.niklasson@his.se)

In the data mining community, decision tree algorithms

are very popular since they are relatively fast to train and

produce transparent models. Greedy top-down construction

is the most commonly used method for tree induction. Even

if greedy splitting heuristics are efficient and adequate for

most applications, they are essentially suboptimal [7]. More

specifically, decision tree algorithms are suboptimal since

they optimize each split locally without considering the

global model. Furthermore, since finding the smallest

decision tree consistent with a specific training set is a NP-

complete problem [8], machine learning algorithms for

constructing decision trees tend to be non-backtracking and

greedy in nature [9]. Hence, due to the local non

backtracking search, decision trees may get stuck in local

minima.

An alternative to the greedy search is to globally optimize

the model using some evolutionary technique, e.g., Genetic

Programming (GP) [10]. GP has, however, a well known

weakness called bloating, i.e., the size of evolved trees may

grow out of control. Bloating is a serious problem since

large programs are computationally expensive to evolve,

will be hard to interpret, and tend to exhibit poor

generalization [11]. It should be noted, on the other hand,

that a certain growth may be necessary to find a more

complex solution. Normally, bloating is handled by

incorporating some kind of size related punishment in the

fitness function, see e.g. [12],[13]. A down side to this

approach is that the size punishment will enforce an upper

bound for the tree size, even if no exact size limit is set.

Hence, different settings for the size punishment is often

used to evolve smaller or larger trees, see e.g. [12], [13].

Theoretically, every point in the search space has a

nonzero probability of being sampled; but for most problems

of interests the search space is so large that it is impractical

to wait long enough for guaranteed global optimums [15].

Larger trees with more nodes naturally lead to larger search

spaces since the attributes and possible splits can be

combined in more ways. Therefore a higher size punishment

could also be used to restrict the size of the evolved tree and

thereby keep the search space within practical limits.

Since smaller rules are more comprehensible, the choice

of length punishment becomes a crucial design choice. On

one hand, a size punishment favoring smaller trees may

result in a sub-optimal accuracy since larger complex rules

may not be evolved. On the other hand, if larger trees are

favored, it may result in an unnecessary complex solution or

a suboptimal solution due to the very large search space.

Based on the discussion above, this paper presents a hybrid

Improving GP Classification Performance

by Injection of Decision Trees

Rikard König, Ulf Johansson, Tuve Löfström and Lars Niklasson

K

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 2942

method combining decision trees and GP. The method not

only automatically adjusts the size punishment to an

appropriate level, but also guides the GP process towards

good solutions in the case of an impractically large search

space.

II. BACKGROUND

This section will first present the main decision tree

algorithms, and some approaches aimed at overcoming the

problems caused by the greedy search. After that, classifier

systems based on genetic programming will be discussed,

followed by a section describing hybrid methods.

A. Decision Trees

A decision tree algorithm typically optimizes some

information theoretic measure, like information gain, on a

training set. The generation of the tree is done recursively by

splitting the data set on the independent variables. Each

possible split is evaluated by calculating the purity gain it

would result in if it was used to divide the data set D into the

new subsets S={D1, D2,…,Dn}. The purity gain is the

difference in purity between the original data set and the

subsets as defined in equation 1 below, where P(Di) is the

proportion of D that is placed in Di. The split resulting in the

highest purity gain is selected, and the procedure is then

repeated recursively for each subset in this split.

 ������, �	 = �������	 ∑ ����	 ∗�
��� ��������	 (1)

There are several different decision tree algorithms, two of

the more well-known are C4.5 [16] and CART [17]. Slightly

different purity functions are used, C4.5 optimizes entropy

E, (equation 2) while CART optimizes the gini index (GDI

in equation 3.) In the equations below, C is the possible

classes, p is the estimated class probability and t is the

current tree node.

 ���	 = ∑ ��log � �
��

��
��� (2)

 �! = 1 − ∑ �%
&��	'

%�� (3)

Compared to optimizing GDI, entropy tends to lead to

smaller and purer nodes, which is favorable for problems

with a clear underlying relationship, but inferior when the

data contain a lot of noise or are missing a real relationship

[18].

When no splits improving purity can be found, the tree

needs to be pruned to remove overly specific nodes to

improve the generalization ability of the tree. Pruning is

typically performed by choosing the best sub-tree based on

the error rate on an unseen validation data set.

1) Improving suboptimal trees

Many researchers have tried to improve decision tree

performance by considering several sequential splits instead

of only the next. However, most studies have shown that this

approach generally fails to improve the performance, and

that it even may be harmful, see e.g. [7], [19].

There have also been several attempts to improve

suboptimal decision trees using a second stage where the

tree is modified using another search technique. An example

of this approach is [20], where a tree is first created using

fuzzy logic search. In the second stage, the terminal nodes in

the tree are adjusted to be optimized on the whole training

set. Other examples are [21] where a suboptimal decision

tree is optimized using dynamic programming and [22]

where multi-linear programming is applied in a similar way.

It should be noted, however, that even if these algorithms

improve the suboptimal decision trees, they are not truly

using global search, since they are dependent of the initial

structure of the tree.

2) Genetic Programming for Classification

Normally a full atomic representation is used for GP

classification. An atomic representation uses atoms in

internal and leaf nodes [9]. Each internal atom represents a

test consisting of an attribute, an operator and a value,

where the operator is a Boolean function. Leaf nodes

contain atoms representing a class of the predicted attribute.

GP classification representations can be divided into the

Michigan and Pittsburgh approaches [6]. In the Michigan

approach, each individual encodes a single prediction rule,

whereas in the Pittsburgh approach each individual encodes

a set of prediction rules.

Another important issue to consider is that conventional

GP is based on the basic assumption of closure [10]. To

achieve closure, the output of any node in a GP tree must be

able to handle all possible parent nodes. This typically

becomes a problem when a dataset contains both categorical

and continuous attributes since they need to be handled by

different functions.

One way to handle this is to use constrained syntactic

structures, see [23], where a set of rules defines allowed sub

nodes for each non terminal function. These rules are then

enforced when creating new trees and during crossover and

mutation. Another slightly more flexible solution is strongly

typed GP [24], which instead defines the allowed data types

for each argument of each non-terminal function and the

returned types of all nodes.

B. GP classifier systems

GP classification has been used successfully in many

applications for a survey see [25]. A common setup is to use

the Pittsburg approach with a full atomic representation.

Most often the Boolean functions <, = are used as operators

while class assignment of the target attribute is used as

terminals. A typical fitness function minimizes both some

error metric and the size of the tree, thus maximizing

accuracy and comprehensibility, see equation 4

 (���)** = +��,-��) + +&��/� (4)

where w1 and w2 are two user-defined weights and Simp is a

measure of the rule simplicity (comprehensibility). Normally

2943

Simp is inversely proportional to the number of conditions in

the rule, i.e., the shorter the rule, the more comprehensible it

is [6]. Variations of the fitness function that follow this

general form can be found in, for instance,

[12],[26],[27],[28].

C. Extensions of standard GP-classification

Since the search space for classification tasks tends to

become extremely large [9], several methods for improving

classification performance of GP systems have been

suggested.

In [29], a GP-system that uses stepwise adaptation of

weights (SAW) is presented. The basic idea is to

dynamically assign higher weights for errors on “hard”

instances, in an online fashion. However, the experiments

show that the suggested SAWing approach fails to

consistently reach a higher performance, compared to

standard GP classification.

In another study [9], machine learning techniques are used

to refine the GP search space. One method applies K-means

clustering to reduce the huge number of possible atoms.

Another approach uses C4.5’s entropy gain criterion

(calculated on the whole data set) to create n new partitions

that are used instead of the normal atomic representation.

Both methods show promising results compared to normal

GP and C4.5. A problem for both techniques is, however,

that their performances are clearly dependent on certain non-

trivial parameter values, i.e., the number of clusters used in

K-means and the number of partitions.

A classifier system based on the Michigan representation

is used in [30], where several classification rules are

evolved. Each rule consists of enumerations of attribute

value pairs, combined with only two Boolean functions,

AND and NOT. If more than one rule covers an instance, the

best rule will be used for classification. GPC, as the method

is called, also uses a covering algorithm to calculate the

overlap of different rules and penalize redundant rules.

Experiments on nine data sets show that the algorithm

performs comparably to other classifiers, despite the simple

representation.

D. Hybrid Systems

The flexibility of GP makes it easy to combine it with other

techniques in hybrid systems. Hence, numerous variations of

GP classification systems exist, including decision trees,

artificial neural networks, fuzzy logic and support vector

machines. The following section, will only present some

typical hybrid methods for creating decision trees, since

decision trees is the targeted technique in this study.

In [31], decision trees are used to create the initial GP

population. More specifically, each individual in the

population is created using C4.5. To achieve some diversity,

each C4.5 tree is created from a random subset of the

original training set. In the reported experimentation, the

suggested method performs remarkably well, compared to

the other techniques. This is very surprising since CART

reaches the same training accuracy but has almost 20%

lower test accuracy. Since both techniques use almost

identical representations, and the results are averaged over

five folds, more similar accuracies should be expected. On

one fold, both CART and the hybrid method achieve 100%

accuracy on training data, but on the test data CART only

reaches 69% compared to 90% for the hybrid method.

Furthermore, the benefit of using C4.5 as creation method is

hard to evaluate based on this study alone, simply because

the results for comparable standalone runs of normal GP and

C4.5 are missing, i.e., there is no way of knowing if GP

increased the accuracy of the original rules.

A similar method also utilizing C4.5 to create the initial

population was presented in [32]. The aim of this study was

to produce short and comprehensible rules. This was

motivated by the statement that C4.5 produced much shorter

and comprehensible rules but could not be trained

incrementally. The suggested method created the initial

population in the same way as the previous study but used

C4.5 settings that created smaller trees. Experiments were

performed on a digit recognition data set, where the

proposed method produced smaller and slightly more

accurate trees, compared to a normal GP implementation.

However, when the number of generations increased, the GP

trees achieved the same accuracy as the hybrid method.

Furthermore, a survey of 13 articles performed in [25],

showed that GP produced more comprehensible rules in

66% of 60 analyzed occasions.

Genetic algorithms (GA) can be used in a similar way to

GP, even if the representation of arbitrary sized rules is not

as straightforward. In [33], a GA and decision tree hybrid is

proposed to handle small disjuncts in classification problems

better. The motivation is that since the general belief is that

large disjuncts capture generalization better, most rule

induction algorithms have a bias favoring the discovery of

large disjuncts. Although each disjunct only covers a few

examples, a set of disjuncts can cover a large part of the data

set. The proposed method first uses C4.5 to find the large

disjuncts, and then the remaining instances are classified

using GA to create rules that cover the small disjuncts. Rules

are represented using the Michigan approach and rule

conditions consist of attribute-value pairs. Experiments

performed on the Adult data set from the UCI machine

learning repository [34] showed that the hybrid method was

considerably better than only using a C4.5 tree.

Another approach to simplifying the creation of a decision

tree is rule extraction. Rule extraction techniques are

designed to handle the so called accuracy versus

compressibility tradeoff, i.e., the fact that most powerful

techniques like artificial neural networks, support vector

machines and ensembles, all are opaque and impossible to

interpret. The basic idea of rule extraction is to use the

prediction of an accurate but opaque model as the target

instead of the original class value when building a

transparent model. The core idea is that the powerful

technique can generalize and create a classification for the

training instances that has less noise than the original data.

2944

Genetic Rule Extraction (G-REX) is a rule extraction

technique based on genetic programming. In several studies,

e.g. [13],[35], G-REX have been shown to outperform

standard decision tree algorithms such as C4.5 and CART,

both in terms of accuracy and comprehensibility.

Disregarding the rule extraction feature, G-REX is a typical

GP classification system based on the Pittsburg

representation and constrained syntactic structures.

III. METHOD

The following section will present a novel hybrid technique

called DT Injection GP (DTiGP). The method starts with

estimating a benchmark level for reasonable accuracy, based

on decision tree performance on bootstrap samples of the

training set. Next, a normal GP evolution is started with the

aim of producing an accurate GP. At even intervals, the best

GP in the population is evaluated against the accuracy

benchmark. If the GP has higher accuracy than the

benchmark, the evolution continues as normal until the

maximum number of generations is reached. If the accuracy

falls below the benchmark, two things happen. First, the

fitness function is modified to allow larger GPs able to

handle more relationships. Secondly, a decision tree with

increasing size (trained on a bootstrap of the training data) is

injected into the population.

The overall purpose of the method is to automatically

force the GP to search for models of suitable size; i.e., as

small as possible but not overly simplified. Because of this,

after the threshold for reasonable accuracy is established, the

GP starts out with small trees and a high length penalty, but

is allowed to search for increasingly larger trees until the

accuracy is higher than the threshold. In more detail, this is

accomplished by decreasing the length penalty and by

injecting accurate models into the population. Once the level

of acceptable accuracy is met by the GP, normal GP

optimization is used for the rest of the search.

As described above, the method is consists of three parts:

estimating a reasonable level of accuracy, evolving GP trees

and conditionally injecting decision trees.

Each part will be described in detail and motivated in the

sections below. Evaluation of the method is done against

normal GP, the decision tree algorithm used for the injected

trees and J48.

A. Estimating Reasonable Accuracy

To obtain as comprehensible trees as possible, a high size

punishment will initially be used to favor small solutions

regardless of the data set. A smaller punishment could lead

to unnecessary complex and specialized trees that may

generalize poorly, when the data contains noise. However,

some data sets require a large complex solution and do not

contain noise. In these cases, a more complex solution is

actually required. A typical example is the UCI dataset Tic-

Tac-Toe, which encodes the complete set of possible board

configurations at the end of tic-tac-toe games. Since no noise

exists, and there is a true underlying concept, a larger

solution will most often perform better.

However, since the true complexity of the solution is not

known, it is impossible to directly set the length punishment

in an optimal way. Instead, the proposed method will

dynamically lower the size punishment, until a reasonable

accuracy is achieved. Several GP runs, with varied size

punishments, could of course be used to find the best setting,

but since GP is computational expensive, this is normally

not practical. Decision trees are, however, fast to train and

usually perform quite well.

To get a good approximation of the performance, 10

bootstrap samples are first drawn from the training set.

Training instances not selected for a specific bootstrap are

instead used as an out of bag test set for that bootstrap. Next,

decision trees are created using jaDTi [36], an open source

implementation based on the C4.5 algorithm. The main

difference from the real C4.5 algorithm is that jaDTi uses

pre pruning based on an entropy threshold, and a score

threshold instead of the usual sub tree based post pruning of

C4.5. The entropy threshold is set to 0.5 and the score

threshold is set to 0.01 * the size of the data set, i.e., the

number of instances in the data set. When all trees have been

created, both average training and test accuracies are

calculated. However, since reasonable training accuracy is

sought, the mean test accuracy would be a too pessimistic

value, and the mean training accuracy would be too

optimistic. Instead, the average of these values is used as the

benchmark for reasonable training accuracy for the GP

system.

B. Evolving Decision Trees

Since this study is a comparison of evolutionary classifier

systems and decision tree algorithms, the Pittsburgh

approach is the most suitable in view of the fact that each

individual represents a single decision tree. Furthermore, a

fair comparison also demands that the GP system uses the

same internal representation, i.e., IF - THEN rules. The GP

implementation of DTiGP is based on an open source

framework for evolutionary data mining presented in [26].

GP settings used in the experiment are presented in Table I.

TABLE I

GP SETTINGS

Population size 200

Creation type Ramped Half and Half

Selection type Roulette wheel

Number of Generations 100

Crossover probability 80%
Mutation probability 1%

Equation 5 below defines the fitness function that is

minimized in the experiments.

 0���)** = �,-��) + �,-��) ∗ *�1) ∗ + (5)

ErrorRate is the percentage of misclassified instances, size

is the number of nodes in the tree and w is a weight used to

2945

balance the size punishment. Since it is the percentage of

misclassified records that is minimized, the settings of w is

independent of the number of instances in the data set. Note

that the size punishment also is scaled with the error rate to

make the size more important for less accurate trees.

Initially, w is 0.01, to ensure that small comprehensible

rules are evolved. However, every five generations, the

training accuracy of the best individual is compared to the

benchmark for reasonable accuracy. If the best individual

has a lower accuracy than the benchmark, w is decreased ten

percent, i.e. w=w*0.9, otherwise the evolution continues as

normal. As mentioned above the motivation for this

adjustment is to allow larger more complex trees when

necessary.

C. Injection of Decision Trees

If the search space is very large, and especially if the

population has been evolved with a high size punishment, it

can sometimes be hard for the GP search to find a good

solution. To help the GP process in these situations, new

individuals created using jaDTi will be injected in to the

population. Similar to how the size punishment is handled,

the best individual will be evaluated against the benchmark

for reasonable training accuracy every 15th generation. If the

best individual performs worse than the benchmark, a

random tree in the population will be replaced with a jaDTi

tree. However, larger jaDTi trees would often have a very

high performance, compared to the GP population since they

are optimized on the training set and could easily become

dominant in the population. To avoid introducing

unnecessary large trees, the injected jaDTi will have an

ascending size, starting with compact trees. The tree size is

decided by stepwise adjusting the score threshold of jaDTi

from 0.05 to 0.001. The score threshold is then multiplied

with the size of the dataset in the same way as when

estimating reasonable accuracy. To make it easier to control

the size of the produced trees, the influence of the entropy

threshold is minimized by setting it to 0.0005. Even if

different bootstrap samples and score thresholds are used for

each tree, they may still become quite similar due to the

deterministic nature of the decision tree search. Hence, to

give the jaDTi trees some extra diversity they are mutated

(using the standard GP mutation operation) before being

injected into the population.

IV. EVALUATION

The experimentation used 18 UCI data sets and 4-fold cross

validation. Standard two tailed sign tests were used to test

for significance in the result. To ensure a fair evaluation, all

techniques were implemented in WEKA [37]. The reported

results are the average accuracies over all folds.

Comparisons were made against jaDTi, normal GP and

WEKA’s J48. The results of jaDTi and normal GP are

reported to evaluate if the hybrid combination is better than

just using the techniques separately.

In the experimentation, normal GP uses the same settings

and fitness function as DTiGP, except from using a lower

weight for the size punishment, (w=0.001). A lower weight

is used since DTiGP is supposed to start looking for really

short and comprehensible solutions, while normal GP must

try to find accurate and reasonably sized tree.

J48 is included in the experiments since it is a well-known

decision tree algorithm, and therefore should be a good

benchmark. J48 is like jaDTi based on the C4.5, but uses the

original post pruning, in difference to jaDTi. J48 is executed

with the standard settings in WEKA.

A. Data sets

The experiments are performed on 18 well known data sets

publically available from the UCI machine learning

repository [38]. For a summary of the characteristics of the

data sets, see Table II. Size is the number of instances in the

data set. Classes is the number of output classes in the data

set. Num. is the number of numeric attributes, and Nom. is

the number of nominal attributes.

TABLE II

CHARACTERISTICS OF DATA SET

Data set Size Classes Num. Nom.

Breast-cancer 286 2 0 9

Breast-w 699 2 9 0

Colic 368 2 7 15

Credit-a 690 2 6 9

Credit-g 1000 2 7 13

Cylinderbands 540 2 20 19

Diabetes 768 2 8 0

Ecoli 336 8 7 0

Glass 214 7 9 0

Haberman 306 2 2 1

Heart-cleveland 303 2 6 7

Heart-statlog 270 2 5 8

Hepatitis 155 2 6 13

Iris 150 3 4 0

Labor 57 2 8 8

Liver-disorders 345 2 6 0

Lymph 148 4 3 15

Tic-tac-toe 958 2 0 9

V. RESULTS

Table III shows the average test accuracies over 4 folds for

each of the tested techniques. The best result for each dataset

is marked with bold letters. DTiGP performs best and have

the highest score (with three split victories) on 10 of the 18

datasets. Normal GP is the second best technique, with 7

overall wins, including two split victories. DTiGP also has

the highest mean accuracy, followed by normal GP, J48 and

jaDTi.

2946

TABLE III
AVERAGE ACCURACY OVER FOUR FOLDS

Data set jaDTi GP DTiGP J48

Breast-cancer 68.8% 69.6% 71.7% 69.9%

Breast-w 93.6% 94.6% 94.7% 95.6%

Colic 75.4% 73.9% 82.6% 86.0%

Credit-a 82.2% 86.7% 86.4% 85.5%

Credit-g 67.7% 72.3% 72.0% 73.0%

Cylinderbands 71.5% 66.5% 71.5% 57.8%

Diabetes 68.0% 73.7% 73.7% 73.3%

Ecoli 75.3% 81.5% 79.5% 78.6%

Glass 67.3% 61.2% 67.3% 66.8%

Haberman 67.6% 74.5% 73.5% 73.9%

Heart-cleveland 72.6% 78.2% 78.9% 75.9%

Heart-statlog 72.6% 80.0% 77.8% 77.0%

Hepatitis 73.5% 73.5% 83.2% 80.6%

Iris 94.0% 94.7% 96.0% 95.3%

Labor 79.0% 89.5% 89.5% 73.7%

Liver-disorders 63.8% 62.0% 64.1% 62.0%

Lymph 78.4% 79.7% 78.4% 73.0%

Tic-tac-toe 93.6% 78.8% 89.9% 84.9%

Average 75.8% 77.3% 79.5% 76.8%

To evaluate if there are any statistically significant

differences, a standard pair wise sign test was used. Using

18 data sets, a sign test requires 14 wins for statistical

significance. Table IV shows wins, ties and losses for the

row technique against the column technique. Significant

results are marked in bold.

As seen in the table, DTiGP performs significantly better

than both decision tree algorithms, having 14 wins against

each. J48 has 12 wins against jaDTi, which is not significant.

TABLE IV

WINS/TIES/LOSSES

 jaDTi GP DTiGP J48

jaDTi - 5/1/12 1/3/14 6/0/12
GP 12/1/5 - 6/2/10 9/1/8
DTiGP 14/3/1 10/2/6 - 14/0/4

J48 12/0/6 8/1/9 4/0/14 -

VI. DISCUSSION

It is interesting to note that DTiGP is 11% better than normal

GP on the Tic-Tac-Toe dataset. Obviously this is due to the

high performance of jaDTi, which reaches an even higher

accuracy by building a very large tree. Since this dataset

does not contain any noise, a bigger tree will almost always

be better. However, this is exactly what DTiGP was

designed to achieve. Since the benchmark for reasonable

performance also is calculated using jaDTi, it becomes

rather high and forces DTiGP to increase its training

accuracy by lowering the size punishment and injecting

larger jaDTi trees. The exact same scenario also happens on

cylinder bands and glass, where jaDTi clearly outperforms

normal GP, thus forcing the GP to aim for higher training

accuracy by using larger programs.

It is not surprising that DTiGP’s accuracy increases when

jaDTi outperforms normal GP, since similar trees will be

injected into the population. However, DTiGP is not

bounded by the accuracy of jaDTi. As seen in table IV,

jaDTi only outperforms normal GP on five datasets, but

DTiGP has 10 wins over normal GP. In fact, DTiGP is not

bounded by the performance of either technique, since it has

seven outright wins when compared to jaDTi and normal

GP. Colic and Hepatitis are two good examples where

DTIGP wins over both techniques with large margins (7%

and 10%, respectively.).

J48 is significantly worse than DTiGP, but still better than

jaDTi on 12 datasets. J48 wins over jaDTi is probably due to

the more advanced pruning algorithm, since both use a

creation method based on C4.5. This result is interesting

since it shows a possible improvement by using J48 in

DTiGP instead of jaDTi.

Finally it is interesting to note that normal GP and J48

perform comparable with nine and eight wins respectively

(with one draw). Apparently, the settings used for normal

GP is not sufficient to constantly outperform decision tree

algorithms. In that light, the fact that DTiGP significantly

outperforms J48 must be considered a strong result.

Furthermore, DTiGP also performs clearly better than

normal GP, losing on only six data sets of 18 against normal

GP. In addition, in all six losses, the differences in accuracy

obtained by the two techniques are all less than 2%. On the

other hand, DTiGP has 10 wins against normal GP, where

five of these wins are between 5% and 10% better than

normal GP.

Even if the aim of this study was not to evaluate the size

of the produced trees, intial results (not presented in detail

here) show that DTiGP generally evolved trees that were

shorter than trees produced by jaDTi and J48, but slightly

larger than the original GP. This is a very promising results

since DTiGP clearly outperforms the other techniques with

regards to accuracy. Typically the trees are only

considerably larger when DTiGP outperforms normal GP;

i.e., when the algorithm is forced to look for larger trees in

order to obtain sufficient accuracy

VII. CONCLUSIONS

The aim of this study was to present DTiGP, a novel

technique aimed at improving GP classification accuracy.

DTiGP’s main strength is that it increases the robustness of

normal GP, thus performing well over a large range of

problems. In the experimentation, DTiGP was significantly

better than J48, and clearly outperformed normal GP.

DTiGP robustness comes from the use of a benchmark

level for reasonable training accuracy, but also from the

injection of decision trees and an adjustable length

punishment. It is clear that the use of the benchmark greatly

improves DTiGP’s result in at least three of the datasets

where normal GP performs poorly. Nevertheless, the

benchmark is not enough in itself when the search space is

too big. Hence, a very important feature of DTiGP is the

2947

injection of accurate trees to help the evolution, when the

benchmark training accuracy cannot be reached.

Lowering the weight of the size punishment and injecting

jaDTi trees greatly improves the robustness and accuracy of

DTiGP. Furthermore, the method does not only improve the

results on hard data sets where standard GP performs poorly,

but also showed to increase the accuracy even when GP

outperformed jaDTi. All in all, the experiments clearly show

that the hybrid solution of injecting decision trees into a GP

population gives synergetic effects, resulting in higher

accuracies than using the basic techniques separately.

VIII. FUTURE WORK

Since J48 clearly outperformed jaDTi, it should be

interesting to evaluate the effects of injecting J48 trees. J48

is more consistent, so should be expected to produce both

better trees for injection and a better estimation of

reasonable training accuracy. In addition, the optimal setup

for when and how often, trees should be injected could be

investigated further.

REFERENCES

[1] Roiger, R. and Geatz, M., Data mining: a tutorial-based primer,
Addison Wesley, Boston, 2003.

[2] Berry, M. J. A. and Linoff, G.. Data mining techniques: for marketing,
sales and customer relationship management, Wiley, New York ;
Chichester, 2004.

[3] Goodwin, P., Integrating management judgment and statistical
methods to improve short-term forecasts, Omega, 30, 127-135, 2002.

[4] Davis, R., Buchanan, B. and Shortliffe, R., Production rules as a
representation for a knowledge-based consultation program, Artificial

Intelligence, 8, 15-45, 1977.

[5] Kim, Y. S., Toward a successful CRM: variable selection, sampling,
and ensemble, Decision Support Systems, 41, 542-553, 2006.

[6] Frietas, A., A Survey of Evolutionary Algorithms for Data Mining and
Knowledge Discovery, Advances in evolutionary computing: theory

and applications, Springer-Verlag, New York, 2003, pp. 819-845.

[7] Murthy, S. K., Automatic Construction of Decision Trees from data:
A Multi-Disciplinary Survey, Data Mining and Knowledge Discovery,
vol. 2, Kluwer Academic Publishers, Boston, 1998, pp. 345-389,

[8] Hyafil, L. and Rivest, R., Constructing optimal binary decision trees is
NP-complete, Information Processing Letters, 5(1):15–17, 1976.

[9] Eggermont J., Kok JN., Kosters W. A.: Genetic Programming for
Data Classification:Partitioning the Search Space, Proceedings of the

2004 ACM symposium on Applied computing, New York, ACM Press;
2004:1001-1005, 2004.

[10] Koza, J. R., Genetic Programming: on the programming of computers
by means of natural selection, MIT Press, Cambridge, 1992.

[11] Poli, R. , Langdon, W.B., McPhee, F. N., A field Guide to Genetic

Programming, United Kingdom, Poli, R., Langdon, W.B., McPhee,
F. N , 2008.

[12] Papagelis, A. and Kalles, D., Breeding Decision Trees Using
Evolutionary Techniques, In 18th International Conference on

Machine Learning, Williamstown, MA, pp. 393-400, 2001.

[13] Freitas, A. A., A Survey of evolutionary algorithms for data mining
and knowledge discovery, Advances in evolutionary computing:
theory and applications, Springer-Verlag, New York, pp. 819-845,
2003.

[14] Konig, R., Johansson, U. and Niklasson, L., Increasing rule extraction
comprehensibility, International Journal of Information Technology

and Intelligent Computing, 1, 303-314, 2006.

[15] Jong K. D. Learning with Genetic Algorithms: An Overview, Machine
learning, 3, Kluwer academic publishers, Netherlands, pp 121-138,
1988. Quinlan, J. R., Induction of Decision Trees, Machine Learning,
1, 81-106, 1986

[16] Quinlan, J. R., C4.5: programs for machine learning, Morgan
Kaufmann Publishers Inc., 1993.

[17] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.
Classification and Regression Trees, Wadsworth, 1983.

[18] Berry, M. J. A., and Linoff, G. Data mining techniques: for marketing,
sales and customer relationship management, Wiley, New York ;
Chichester, 2004.

[19] Murthy, S. K. and Salzberg S. Lookahead and pathology in decision
tree induction, Proceedings of the 14th International joint conference

on artificial Intelligence, Morgan Kaufman, pp. 1025-1031, 1995.

[20] Wang, Qing Ren and Ching Y. Suen. Large tree classifier with
heuristic search and global training. IEEE Trans. on Pattern Analysis

and Machine Intelligence, PAMI-9(1):91–102, January 1987.

[21] Meisel, W. S. and Demetrios A. Michalopoulos. A partitioning
algorithm with application in pattern classification and the
optimization of decision trees. IEEE Trans. on Comp., C-22(1):93–
103, 1973.

[22] Bennett, Kristin P. Global tree optimization: A non-greedy decision
tree algorithm. In Proc. of Interface 94: The 26th Symposium on the

Interface, Research Triangle, North Carolina, 1994.

[23] Koza, J. R. (1992). Genetic Programming, MIT Press/Bradford
Books, Cambridge, MA, 1992.

[24] Montana, J. M., Strongly Typed Genetic Programming, Evolutionary

Computation,3,pp. 199-230, 1993.

[25] Espejo, P., Ventura, S. & Herrera, F., 2010. A Survey on the
Application of Genetic Programming to Classification. IEEE

Transactions on Systems, Man and Cybernetics, 40(2), 121-144.

[26] Konig, R., Johansson, U. and Niklasson, L., G-REX: A Versatile
Framework for Evolutionary Data Mining, IEEE International

Conference on Data Mining Workshops, Pisa, Italy, pp. 971-974,
2008.

[27] Bojarzuk, C.C., Lopes, H. S., Freitas, A. A and Michalkiewicz, E. L.,
A constrained-syntax genetic programming system for discovering
classification rule: application to medical data sets. Artificial

Intelligence in Medicine, vol. 30:1, pp 27-48, 2004.

[28] De Falco, i., Della Cioppa, A., Tarantino, E., Discovering interesting
classification rules with genetic programming, Applied soft

computing, vol. 1, pp. 257-269, 2002.

[29] Eggermont J., Eiben, A.E., and Hemert, J.I., Adapting the fitness
function in GP for data mining. Proceedings of Second European

Workshop on Genetic Programming, LNCS. Springer, Berlin, 1999.

[30] Tan K.C., Tay A., Lee T.H, Mining multiple comprehensible
classification rules using genetic programming, Proceedings of the

2002 congress on evolutionary computation, pp. 1302-1307, 2002.

[31] Wo-Chiang, L., Genetic Programming Decision Tree for Bankruptcy
Prediction, Advances in intelligent systems research, Atlantis Press.
2006.

[32] Oka, S. & Zhao, Q., 2007. Design of Decision Trees through
Integration of C4.5 and GP. Japan-Australia Joint Workshop on

Intelligent and Evolutionary Systems. pp. 128-135.

[33] Carvalho. D., Freitas. A., Ahybrid decision tree/genetic algorithm for
coping with the problem of small disjuncts in data mining,
International Journal of Information Sience,Elsevier Science Inc,
New York, USA, vol. 163, pp. 13-35, 2004.

[34] Blake, C. L. and Merz, C. J. 1998. "UCI Repository of machine
learning databases." University of California, Department of
Information and Computer Science.

[35] Johansson U., Konig, R. and Niklasson, L., The truth is in there -
Rule extraction from opaque models using genetic programming,
International Florida Artificial Intelligence Research Society
Conference, Miami Beach, Florida, USA, pp. 658-663, 2004.

2948

[36] Francois, J. M., jaDTi – Decision Trees: a Java implementation,
http://www.run.montefiore.ulg.ac.be/~francois/software/jaDTi/

[37] Weka 3: Data mining software in Java,
http://www.cs.waikato.ac.nz/ml/weka/

[38] Blake, C. L. and Merz, C. J., UCI Repository of machine learning
databases, University of California, Department of Information and
Computer Science, 1998.

2949

